首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 140 毫秒
1.
姜晴  刘嫣 《冶金分析》2017,37(6):65-68
纯金属分析时为了消除基体效应的影响,通常需要先分离基体,再对其痕量元素进行测定,这不仅前处理过程较为复杂,还易造成样品污染。实验以硝酸(1+1)溶解样品,采用基体匹配法配制标准溶液系列以绘制校准曲线,最终实现了电感耦合等离子体质谱法(ICP-MS)对纯铟中镁、铬、锰、钴、镍、锆、钼、锑8种元素的测定。通过选择合适的同位素消除了质谱干扰;采用10ng/mL钪对元素镁、铬、锰和镍进行校正,采用10ng/mL铑对钴、钼、锑和锆进行校正,克服了基体效应和信号漂移的影响。实验表明,各元素的质量浓度在1.00~50.0ng/mL范围内与其信号强度呈一定的线性关系,相关系数均大于0.999。方法的检出限为0.09~0.78ng/mL。将实验方法应用于纯铟实际样品中镁、铬、锰、钴、镍、锆、钼、锑8种元素的测定,相对标准偏差(RSD,n=7)不大于10.2%,加标回收率为88%~114%。  相似文献   

2.
高纯氧化镁产品纯度达到99.9%,杂质硅含量是评价高纯氧化镁产品等级的重要指标之一,对其进行准确测定显得尤为重要。常规的标准曲线法无法克服镁的基体效应,国内同行常规使用基体匹配法来克服基体效应,但是难以找到含杂元素与高纯氧化镁产品相近且纯度更高的金属镁。采用标准加入法作为技术手段,优点是非常适合高镁基体浓度中(超)痕量元素的分析,准确度高。本研究以盐酸溶解样品,以标准加入法为技术手段,采用电感耦合等离子体发射光谱技术,建立了一种简单、快速、准确的测定方法。该方法在分析谱线251.611 nm处,有良好的线性关系,方法的检出限为0.018 3 μg/mL,测定下限为0.061 0 μg/mL。在实际高纯氧化镁产品测试中,加标回收率在97.86%~103.80%之间,适合高纯氧化镁产品中酸溶硅的测定,为解决盐湖化工企业氧化镁产品中酸溶硅含量的测定提供了技术支撑。   相似文献   

3.
测定锆及锆合金中杂质元素的研究较为常见,而针对高纯锆中化学成分检测的相关研究较少。在讨论各杂质元素质谱干扰的基础上,通过选择合适的同位素及分辨率,建立了辉光放电质谱法(GDMS)测定高纯锆中Na、Al、Si、P、Ti、V、Cr、Fe等36种痕量杂质元素的分析方法。对仪器参数进行了优化,最终选择氩气流量为370mL/min,放电电流为32mA,预溅射时间为15min。利用建立的实验方法对高纯锆样品中痕量杂质元素进行了测定,测定结果的相对标准偏差(RSD,n=7)均小于30%,质量分数大于0.1μg/g的杂质元素的RSD(n=7)均小于10%。采用电感耦合等离子体质谱法(ICP-MS)进行了方法比对,实验方法与ICP-MS的结果具有一致性。  相似文献   

4.
葛晶晶  刘洁 《冶金分析》2016,36(9):37-41
高纯锌中铁、铜、镉、锑、铅、锡、砷元素含量低,基体和多原子离子干扰严重,这使得溶样后直接采用电感耦合等离子体质谱法(ICP-MS)对这7种元素进行测定的难度较大。实验表明:采用15 mL硝酸(1+2)低温溶解0.100 0 g样品,不进行基体分离,通过优化仪器参数、选择合适的同位素避免质谱干扰,采用标准加入法绘制校准曲线消除基体效应,可实现电感耦合等离子体质谱法(ICP-MS)对高纯锌中铁、铜、镉、锑、铅、锡和砷共7种痕量元素的测定。各元素校准曲线的相关系数在0.995 8到0.999 7之间,方法检出限为0.05~7.53 μg/L。采用实验方法对高纯锌实际样品中铁、铜、镉、锑、铅、锡和砷进行分析,测得结果的相对标准偏差(RSD,n=11)为2.4%~5.3%,加标回收率为96%~109%。按照实验方法测定纯锌样品中7种痕量元素,砷测得结果与电感耦合等离子体原子发射光谱法(ICP-AES)基本一致,锡和锑与原子荧光光谱法(AFS)基本一致,铁、铜、镉和铅与采用锌基体分离—ICP-MS基本一致。  相似文献   

5.
张颖  李林元  张蕾 《冶金分析》2019,39(9):8-13
高纯碳化钨粉作为超细硬质合金生产的原料,其杂质元素含量的分析和控制十分重要。采用电感耦合等离子体质谱法(ICP-MS)测定高纯碳化钨粉时,需先将样品中碳完全氧化除去后再进样测定,否则不溶的游离碳会堵塞仪器进样系统,引起信号波动,严重干扰测定。实验采取将样品于600~800℃马弗炉中氧化的方式除去游离碳,然后再用氨水消解样品,在优化测定同位素和仪器工作参数的基础上,采用屏蔽炬冷焰技术测定钙、铁、铬、镁、铝、锰、钴、镍、铜,采用常规模式测定砷、铋、镉、钼、铅、锑、锡、钛、钒以消除质谱干扰,以钨基体匹配法绘制校准曲线克服基体效应,控制基体质量浓度为0.5mg/mL,实现了ICP-MS对高纯碳化钨粉中这18种元素的测定。在选定的工作条件下,各元素校准曲线的线性相关系数均大于0.9995,方法检出限在0.006~0.330μg/g之间。应用实验方法测定高纯碳化钨粉样品中18种杂质元素,锡测定值的相对标准偏差(RSD,n=11)为24%,除锡外其他元素的RSD(n=11)均小于10%,测定值与直流电弧原子发射光谱法(ARC-AES)结果基本吻合。因高纯碳化钨粉样品在马弗炉中氧化后主要成分为三氧化钨,因此采用实验方法对三氧化钨标准样品中18种杂质元素进行测定以验证方法正确度,结果表明,测定值与认定值基本一致。  相似文献   

6.
黄双 《冶金分析》2019,39(3):13-20
采用电感耦合等离子体质谱法(ICP-MS)测定高纯五氧化二铌中痕量Mg、K、Ca、Cr、Fe时,因质谱干扰严重,从而导致其背景等效浓度值(BEC)较高进而无法准确测定。实验采用氢氟酸-硝酸体系以微波消解方式消解样品,以标准加入法补偿基体效应,控制基体质量浓度为500μg/mL,建立了ICP-MS测定高纯五氧化二铌中包括Mg、K、Ca、Cr、Fe在内的25种痕量杂质元素的分析方法。研究表明:采用屏蔽矩冷等离子体技术,在500μg/mL的五氧化二铌基体溶液中,Na、Mg、Al、K、Ca、Cr、Fe、Cu、Co、Ni、Mn的BEC得到明显改善,尤其是Mg、K、Ca、Cr、Fe的BEC改善效果最为显著,由常规模式下的56.5~194ng/mL降至冷等离子体模式下的0.012~0.203ng/mL;使用经实验室亚沸蒸馏提纯的电子级氢氟酸及硝酸可有效地降低试剂空白值。各元素校准曲线线性相关系数均大于0.9990;方法中各元素的检出限在0.001~0.010μg/g之间,测定下限在0.003~0.033μg/g之间。采用实验方法对高纯五氧化二铌样品中25种杂质元素进行测定,结果表明,各元素测定结果的相对标准偏差(RSD,n=11)为0.90%~12.7%,回收率为91%~111%。方法应用于两批纯度为99.999%的超高纯五氧化二铌实际样品分析,结果与辉光放电质谱法(GD-MS)基本一致。  相似文献   

7.
利用电感耦合等离子体质谱法(ICP-MS)测定5N~6N(纯度为99.999%~99.999 9%)高纯硒中痕量杂质元素时,硒的基体效应明显,影响结果的准确性。采用硝酸溶解高纯硒,经4-甲基-2-戊酮选择性萃取硒后,对水相进行测定,建立了电感耦合等离子体质谱法测定高纯硒中的Li、Be、B、Sc、Ti、V、Cr、Mn、Co、Ni、Cu、Zn、As、Sr、Cd、Ba、Pb共17种痕量杂质元素的方法。实验表明,萃取时当盐酸浓度为7mol/L、MIBK体积为20mL和萃取时间为2min时,水相中硒的质量浓度低于5mg/L,此时硒基体对测定的影响可忽略。方法中各元素校准曲线的线性关系均大于0.999 5,各待测元素的方法检出限为0.2~7.0ng/g。按照实验方法对高纯硒样品中这17种杂质元素进行测定,测定结果的相对标准偏差(RSD,n=6)在5.0%~11.2%之间,加标回收率在91%~103%之间。  相似文献   

8.
本文介绍了电感耦合等离子体串联质谱(ICP-MS/MS)仪器及技术特点,对近5年来电感耦合等离子体串联质谱在高纯金属及其氧化物、合金、冶金物料中杂质元素的分析,环境样品、食品、植物、中药中痕量元素及同位素分析、元素形态分析,以及化学工业及半导体中无机元素分析等方面的应用进行了概述和总结。展望了电感耦合等离子体串联质谱技术发展及应用前景。  相似文献   

9.
成勇 《冶金分析》2009,29(10):7-12
采用电感耦合等离子体质谱(ICP-MS)法直接同时测定TiO2中Hg,As,Cd,Pb,Sn,Bi,Sb,Co,Ni,Cr,Fe,Mn,V,Ca,Ba,Si,P,Nb,Zr,Ge,Ga,Zn,Mo,Se痕量元素。采用微波密闭消解法分解样品并进行试剂选择试验,探讨了高钛基体和消解试剂所产生的质谱干扰。通过选择适宜待测元素同位素、优选影响因素少的消解试剂和减少试剂用量等方式来克服质谱干扰。以基体匹配法和Rh作为内标元素消除基体效应的影响。验证表明Rh的校正作用使精密度得到了明显改善。方法的检出限为0.01~11.2μg/L,相关系数r≥0.996;以本法测定TiO2中痕量元素的结果表明:回收率为87%~107%,RSD<6.4%,背景等效浓度为0.01~12.1μg/L,多种方法结果对照一致。  相似文献   

10.
高纯钨广泛应用于电子信息行业,其电子特性很大程度上取决于其杂质含量,因此,有必要对高纯钨中杂质元素进行测定。通过优化辉光放电工艺参数、选择合适的同位素及分辨率,建立了辉光放电质谱法(GDMS)测定高纯钨中10种痕量杂质元素的分析方法。优化后的放电条件为:放电电流3.0 mA,放电气体流量500 mL/min,预溅射时间20 min。为提高痕量杂质元素的检测准确度,利用高纯钨标准样品对10种元素的相对灵敏度因子(RSF)进行了校正,获得了与基体匹配的RSF。方法中10种元素的检出限为0.005~0.019 μg/g,定量限为0.017~0.064 μg/g。按照实验方法测定高纯钨中10种杂质元素,并用电感耦合等离子体质谱法(ICP-MS)的测定结果作为比较以验证准确性。结果表明:样品中杂质元素的含量为0.027~155.07 μg/g,质量分数小于100 μg/g的杂质元素,其结果相对标准偏差(RSD,n=6)均小于30%;质量分数大于100 μg/g的杂质元素,其结果RSD(n=6)小于10%。除Mg、Sn、Pb低于ICP-MS的检出限外,其余各杂质元素的测试结果与ICP-MS结果基本一致。  相似文献   

11.
采用国家标准方法ICP-MS法测定高纯金中的杂质元素时,利用传统湿法消解样品后,大量金基体对杂质元素测定产生干扰和抑制作用,影响测定结果的准确度。实验建立微波消解-萃取—ICP-MS法测定高纯金中杂质元素的方法,并对微波消解-萃取条件进行优化,提高金溶解率及金萃取率,消除金基体对杂质元素测定的干扰。该方法可同时测定40种杂质元素,检出限为0.01~0.29μg/g,测定结果相对标准偏差(n=6)为1.29%~4.18%,加入标准物质回收率为86.94%~115.55%,准确度和精密度良好。  相似文献   

12.
利用电感耦合等离子体原子发射光谱法(ICP-AES)测定高纯钼样品中杂质元素含量时,由于钼元素具有丰富的谱线,因此钼基体对待测元素干扰较大。为了消除钼基体对待测元素的干扰,实验使用过氧化氢溶解样品,过量硝酸沉淀分离钼基体作为样品前处理步骤,建立了基体分离-电感耦合等离子体原子发射光谱法测定高纯钼中钙、铬、铜、钴、镁、镍、锌、镉和锰的方法。使用4mL过氧化氢溶解样品,10mL硝酸沉淀钼基体,钼的沉淀效率大于99%,沉淀后,各待测元素背景等效浓度均有下降,且回收率都高于85%,随沉淀损失较少。使用高纯钼基体沉淀分离的方法配制校准曲线,各待测元素校准曲线线性相关系数均大于0.999 7;方法中各元素的定量限为0.20~2.03μg/g。实验方法用于测定高纯钼样品中钙、铬、铜、钴、镁、镍、锌、镉和锰,结果的相对标准偏差(RSD,n=5)为2.0%~4.8%,测定结果与电感耦合等离子体质谱法(ICP-MS)结果一致。  相似文献   

13.
林园 《冶金分析》2018,38(3):41-45
足金样品的检测有着广泛市场需求,但常用的火焰原子吸收光谱法(FAAS)、电感耦合等离子体原子发射光谱法(ICP-AES)对于铅、镉质量分数均小于0.0001%的足金样品无能为力,而电感耦合等离子体质谱法(ICP-MS)标准加入校正-内标法不能用于银、铜含量高(质量分数均大于0.001%)的足金样品检测。采用王水溶解样品后直接用乙酸乙酯萃取,以2%~5%(体积分数)硝酸为测定介质,建立了ICP-MS测定纯度为99.9%~99.999%足金中铜、银、铅、镉4种主要杂质元素的方法。干扰试验表明,足金中高含量银对测定铜、铅、镉没有干扰。在选定的实验条件下,各元素校准曲线的相关系数不小于0.9994,方法测定下限为0.01~0.19μg/g。将实验方法应用于足金实际样品分析,结果的相对标准偏差(RSD,n=6)为1.3%~2.6%,加标回收率为99%~105%。采用实验方法对3种纯度(99.9%、99.99%、99.999%)足金样品中的铜、银、铅和镉进行测定,测得结果分别与原子吸收光谱法(AAS)或ICP-MS标准加入校正-内标法基本一致。方法可实现纯度为99.9%~99.999%足金中银、铜、铅、镉的测定。  相似文献   

14.
高纯碱金属盐中杂质测定方法的研究进展   总被引:1,自引:1,他引:0  
王晓辉 《云南冶金》2011,40(5):64-67,75
高纯碱金属盐的纯度对其应用有很大影响,痕量杂质元素含量的严格控制和准确测定非常重要。本文对高纯碱金属盐中的杂质分析方法(原子吸收光谱法、分光光度法、电感耦合等离子体光谱法、电感耦合等离子体质谱法、离子色谱法等)进行了综述。  相似文献   

15.
建立了1-苯基-3-甲基-4-苯甲酰基-吡唑酮[5](PMBP)萃取分离基体-电感耦合等离子体质谱法(ICP-MS)测定高纯二氧化锆中痕量稀土杂质的方法。结果表明,在2 mol/LHNO3介质中,基体锆的萃取率为99.7%,而待测稀土元素则完全留在水相中。考察了影响萃取和测定的主要因素。在优化实验条件下,方法的测定下限为1.8~5.7 ng/g,回收率在89.0%~110%之间,相对标准偏差(RSD)小于14%。  相似文献   

16.
用电感耦合等离子体原子发射光谱法(ICP-AES)准确测定高纯铁化合物中的痕量杂质元素,需要更高纯度的铁作为基体,以研究它对测定杂质元素的干扰。为此,以分析纯硫酸亚铁为原料制备了高纯氧化铁,制得的高纯氧化铁中杂质元素Al、Cd、Co、Cr、Cu、Mg、Mn、Ni和Zn等的含量低于方法检出限。用制备的高纯氧化铁作为标准系列溶液的基体,得到了基体匹配的标准系列溶液,用此标准系列溶液绘制的校准曲线测定了GBW01402d高纯铁标准物质中杂质元素的含量,其测定值与认定值一致。研究了用无基体匹配标准溶液测定高纯铁及铁化合物中Al、Cd、Co、Cr、Cu、Mg、Mn、Ni和Zn等杂质时的干扰校正方法,结果表明:Al、Co、Cr、Cu、Mg和Zn受到的光谱干扰仅需采用离峰法校正即可,而Cd、Mn和Ni受到的光谱干扰则必需采用多元光谱拟合法校正。用拟定的校正方法测定高纯铁化合物中的痕量杂质元素,准确度高的元素有Al、Cd、Cr和Cu,准确度稍差的元素有Co、Mg、Mn、Ni和Zn。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号