首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 156 毫秒
1.
葛晶晶  刘洁 《冶金分析》2016,36(9):37-41
高纯锌中铁、铜、镉、锑、铅、锡、砷元素含量低,基体和多原子离子干扰严重,这使得溶样后直接采用电感耦合等离子体质谱法(ICP-MS)对这7种元素进行测定的难度较大。实验表明:采用15 mL硝酸(1+2)低温溶解0.100 0 g样品,不进行基体分离,通过优化仪器参数、选择合适的同位素避免质谱干扰,采用标准加入法绘制校准曲线消除基体效应,可实现电感耦合等离子体质谱法(ICP-MS)对高纯锌中铁、铜、镉、锑、铅、锡和砷共7种痕量元素的测定。各元素校准曲线的相关系数在0.995 8到0.999 7之间,方法检出限为0.05~7.53 μg/L。采用实验方法对高纯锌实际样品中铁、铜、镉、锑、铅、锡和砷进行分析,测得结果的相对标准偏差(RSD,n=11)为2.4%~5.3%,加标回收率为96%~109%。按照实验方法测定纯锌样品中7种痕量元素,砷测得结果与电感耦合等离子体原子发射光谱法(ICP-AES)基本一致,锡和锑与原子荧光光谱法(AFS)基本一致,铁、铜、镉和铅与采用锌基体分离—ICP-MS基本一致。  相似文献   

2.
用微波消解技术,以混合酸(盐酸-硝酸-硫酸-双氧水)消解磷酸铁锂样品,建立了电感耦合等离子体质谱法(ICP-MS)测定磷酸铁锂中钠、镁、铝、钙、钛、铬、锰、钴、镍、铜、锌、铅等12种微量杂质元素的分析方法。确定了最佳实验条件如下:采用普通模式测定元素铅,氦碰撞模式测定钠、镁、铝、钛、铬、锰、钴、镍、铜、锌,氢气反应模式测定钙;碰撞气He气流速为5.6 mL/min,反应气H2的流速为6.2 mL/min;钠、镁、铝、钙、钛采用钪为内标进行基体校正,铬、锰、钴、镍、铜、锌采用铱进行校正,铅采用铋进行校正。方法检出限在4.5~28.9 ng/L之间。采用实验方法对磷酸铁锂实际样品中各元素进行测定,结果的相对标准偏差(RSD,n=11)在0.6%~1.9%之间,加标回收率为94%~107%。方法测得结果与电感耦合等离子体原子发射光谱法(ICP-AES)进行对比分析,结果基本一致。  相似文献   

3.
建立了超声辅助王水消解土壤样品的前处理方法,并结合电感耦合等离子体原子发射光谱法(ICP-AES)和电感耦合等离子体质谱法(ICP-MS)对土壤样品中铜、锌、镍、铁、锰、铅、砷、汞、铬、镉等10种元素进行测定。通过试验确定王水用量为5mL、超声水浴温度为80℃、超声提取时间为45min的超声提取条件。在优化的仪器条件下,按照实验方法测得的土壤样品中10种元素的校准曲线线性相关系数为0.9996~0.9999;各元素的检出限为0.0021~0.23mg/kg,各元素的测定下限为0.0070~0.78mg/kg。按照实验方法(超声王水提取-ICP-AES/ICP-MS)测定土壤样品中铜、锌、镍、铁、锰、铅、砷、汞、铬、镉,测定结果的相对标准偏差(RSD,n=6)为0.39%~7.8%;除铁、锰的提取值较小外,其他元素的测定结果与采用国标方法(GB 15618—1995、GB/T 22105.1—2008)得到的测定值基本一致;按照实验方法测定土壤标准物质GBW07404、GBW07406、GBW07407、GBW07427中铜、锌、镍、锰、铅、砷、汞、铬、镉,除了锰由于其在原土中主要以氧化物结合态存在,测定结果偏低以外,其他元素测定值与认定值相吻合。  相似文献   

4.
在这项工作中,建立了ICP-MS方法(微波消解-电感耦合等离子体质谱法)测定水产品中的痕量元素。用HNO_3-HCl-H_2O系统消化样品,然后添加金标准溶液以除去系统中的Hg储存。Co/ors混合模式电感耦合等离子体质谱法(ICP-MS)用于测定水产品中的28种微量元素锂、铍、铝、钛、钒、铬、锰、铁、钴、镍、铜、锌、镓、砷、硒、锶、钼、银、镉、锡、锑、碲、钡、汞、铊、铅、铀。回收率为85.3%~110%,标准偏差小于10%。28个项目的检出限为0.001~0.022mg kg~(-1)。该方法适用于在实验室水产品中同时实施28个跟踪设备。  相似文献   

5.
用电感耦合等离子体质谱法(ICP—MS)直接测定5N镍中痕量铅、锌、银、锰、铜。样品用硝酸溶解,选择适当的同位素,克服测定过程中的质谱干扰,以元素铟做内标,补偿因基体效应及仪器波动的影响。方法加标回收率为86%~106%,相对标准偏差为1.47%~3.61%。  相似文献   

6.
样品经硝酸溶解、阳离子交换树脂分离后,采用石墨炉原子吸收光谱法测定了高纯铟中痕量砷。研究了溶样方法、离子交换分离和测定砷的条件。结果表明,5 mL硝酸可完全溶解0.4 g铟;采用0.4 mol/L硝酸作为淋洗液进行离子交换后,样品中痕量的铝、铁、锡、铜、铅、锌、镉、镁、铊、银、镍及大量的铟可被分离除去,硅虽然不能与砷分离,但对测定无影响。当进样量为20 μL时,方法线性范围为5~35 ng/mL,检出限为0.8 ng/mL,定量测定下限为0.02 μg/g,比行业标准方法 YS/T 230.3-1994的0.3 μg/g低1个数量级。方法用于实际样品分析,结果与电感耦合等离子体质谱法(ICP-MS)相符,相对标准偏差(RSD,n=8)在1.7%~15.7%之间,加标回收率为95%~110%。  相似文献   

7.
利用石墨消解仪斜坡升温7 min至120 ℃,并在120 ℃保持20 min,以10%(V/V)王水为介质,实现了电感耦合等离子体质谱法(ICP-MS)对影响海绵钯品级的18种杂质元素的测定。研究表明:通过选择20 μg/L的45Sc 、89Y、159Tb作为内标及控制测定液Pd基体质量浓度为2.0 mg/mL,可有效校正基体效应;铝、镍、铜、锌、钌、铑、铂、银、锡、铱、金、铅、铋以标准模式进行测定,镁、硅、铬、锰、铁以氨气反应模式进行测定可消除质谱干扰。在选定的实验条件下,各元素校准曲线线性相关系数不小于0.999 6,方法检出限为1.0~42 ng/L。采用实验方法对海绵钯中杂质元素进行测定,所得结果的相对标准偏差(RSD,n=11)为0.8%~2.8%,加标回收率为90%~107%。将实验方法对海绵钯实际样品的测定结果与电感耦合等离子体原子发射光谱法(ICP-AES)进行对比,二者基本一致。  相似文献   

8.
铝-锌-铟系合金牺牲阳极样品用盐酸和过氧化氢溶解,选择干扰少或没有干扰且灵敏度高的谱线作为待测元素的分析谱线,采用左、右两点扣背景的方法校正光谱干扰和基体匹配方法消除物理干扰,实现了使用电感耦合等离子体原子发射光谱法(ICP-AES)测定铝-锌-铟系合金牺牲阳极中铁、铜、铟、锡、锌、镉、镁、钛和硅等元素。方法中各元素检出限在0.000 011%~0.000 77%(质量分数)之间,校准曲线的线性相关系数r>0.997。按照方法测定实际样品,测定结果的相对标准偏差RSD≤4.0%(n=10)。标准样品的测定值与认定值一致;实际样品的加标回收率为99%~110%。  相似文献   

9.
镍基高温合金广泛应用于航空发动机的热端部件,其主要原材料高纯镍的纯度对其性能有着重要影响,因此需要测定和控制高纯镍中痕量元素的含量。通过选择合适的同位素克服质谱干扰,选择标准加入法绘制校准曲线克服基体效应,对辅助气流量进行了优化,在高分辨率模式下测定钙和砷,在中分辨率模式下测定其余元素,建立了高分辨电感耦合等离子体质谱法测定高纯镍中镁、铝、磷、钙、锰、铁、铜、锌、镓、锗、砷、硒、银、镉、铟、锡、锑、碲、金、汞、铊、铅、铋、钍、铀共25种痕量元素的方法。在优化的实验条件下,校准曲线线性相关系数均在0.999以上,各元素的方法检出限在0.003~0.15 μg/L之间,定量限在0.010~0.50 μg/L之间。选择3个高纯镍样品(纯度为99.99%),按实验方法对其中25种痕量元素进行测定,同时对同一高纯镍样品进行不同梯度的加标回收试验,结果表明,测定结果的相对标准偏差(RSD,n=8)为3.5%~9.7%,回收率为90%~110%。采用实验方法测定纯镍标准物质,测定值与标准值基本一致。按照实验方法对高纯镍样品中25种杂质元素进行测定,同时采用辉光放电质谱法进行方法比对,结果表明,两种分析方法测定结果吻合度较高。  相似文献   

10.
采用硝酸(1+1)溶解样品,选择Pb 220.353 nm、Sn 189.927 nm、Si 251.611 nm、Zn 206.200 nm、Ni 231.604 nm、Mn 260.568 nm、Fe 259.939作为分析谱线,使用电感耦合等离子体原子发射光谱法(ICP-AES)同时测定了铝青铜中铅、锡、硅、锌、镍、锰、铁。试验探讨了铝青铜中基体元素对待测元素测定的影响,结果表明:通过基体匹配法绘制校准曲线消除了基体效应的影响。各元素的校准曲线线性相关系数均大于0.999;方法中各元素的检出限为0.9~20.8 μg/g。方法应用于铝青铜标准物质中铅、锡、硅、锌、镍、锰、铁的测定,结果的相对标准偏差(RSD,n=10 )在0.36%~4.0%之间,标准物质的测定值与认定值无显著性差异。按照实验方法对两个铝青铜QAl10-3-1.5产品中铅、锡、硅、锌、镍、锰、铁进行测定,加标回收率为90%~108%。  相似文献   

11.
袁丽丽 《冶金分析》2021,41(2):54-59
再生锌原料中铟含量是贸易结算的重要指标,准确测定再生锌原料中铟含量具有重要意义.选用氟化铵-盐酸-硝酸-高氯酸体系溶解样品,在体积分数为10%的硝酸介质中,使用空气-乙炔火焰,以303.9 nm为测定波长,建立了火焰原子吸收光谱法(FAAS)测定再生锌原料中0.02%~2.0%(质量分数)铟的方法.对试样中共存元素的干...  相似文献   

12.
氧化铟锡中杂质元素的含量是衡量其产品性能的重要参数。采用盐酸以微波消解法处理样品,以Cs为内标,氩气模式下测定24Mg、27Al、52Cr、58Ni、63Cu、64Zn、90Zr、208Pb、205Tl、111Cd,氢气碰撞反应池模式测定28Si、40Ca、56Fe,实现了电感耦合等离子体质谱法(ICP-MS)对氧化铟锡靶材(ITO)中镁、铝、硅、钙、铬、铁、铜、镍、锌、锆、镉、铅、铊等13种痕量杂质元素的测定。实验表明,当氧化铟锡基体质量浓度为1.00mg/mL时,基体效应可忽略;13种杂质元素在1.0~100ng/mL范围内线性良好,线性相关系数均大于0.9990。方法检出限为0.002~0.15μg/g,测定下限为0.007~0.50μg/g。将方法应用于氧化铟锡靶材样品中13种痕量杂质元素的分析,相对标准偏差(RSD,n=7)均小于5%,加标回收率为88%~114%。采用实验方法对氧化铟锡靶材样品进行分析,并与电感耦合等离子体原子发射光谱法(ICP-AES)进行比对,二者测定值基本一致。  相似文献   

13.
建立了电感耦合等离子体原子发射光谱法(ICP-AES)测定粗硒物料中铝、铋、镉、钴、铬、铜、铁、镓、铟、镁、锰、镍、铅、碲、钛、钒、锌17种杂质元素的定量分析方法。样品用硝酸-盐酸(V(硝酸)∶V(盐酸)= 5∶10)溶解,在少量硫酸存在下,以盐酸-氢溴酸混合酸挥发除硒,加热冒尽硫酸烟后在15%(V/V)盐酸-硝酸混合酸[V(硝酸)∶V(盐酸)= 3∶1]介质中测定。因为不需要在挥发炉中挥硒,所以操作简单,硒挥发率高,测定元素无挥发损失,且样品中残存硒及共存元素不干扰测定。方法的检出限为0.000 2~0.179 4 μg/mL,测定下限为0.1~15.0 μg/g,各元素质量浓度为0~10 μg/mL时,校准曲线的相关系数r≥0.999 9。方法用于粗硒样品中上述17种杂质元素的测定,测定值与有色金属行业标准分析方法的测定值一致,平均回收率在92%~112%之间,相对标准偏差(RSD,n=7)除含量较低的Cd,Co,Cr,Ga,In,V痕量元素外,其他元素均小于10%。  相似文献   

14.
张颖  李林元  张蕾 《冶金分析》2019,39(9):8-13
高纯碳化钨粉作为超细硬质合金生产的原料,其杂质元素含量的分析和控制十分重要。采用电感耦合等离子体质谱法(ICP-MS)测定高纯碳化钨粉时,需先将样品中碳完全氧化除去后再进样测定,否则不溶的游离碳会堵塞仪器进样系统,引起信号波动,严重干扰测定。实验采取将样品于600~800℃马弗炉中氧化的方式除去游离碳,然后再用氨水消解样品,在优化测定同位素和仪器工作参数的基础上,采用屏蔽炬冷焰技术测定钙、铁、铬、镁、铝、锰、钴、镍、铜,采用常规模式测定砷、铋、镉、钼、铅、锑、锡、钛、钒以消除质谱干扰,以钨基体匹配法绘制校准曲线克服基体效应,控制基体质量浓度为0.5mg/mL,实现了ICP-MS对高纯碳化钨粉中这18种元素的测定。在选定的工作条件下,各元素校准曲线的线性相关系数均大于0.9995,方法检出限在0.006~0.330μg/g之间。应用实验方法测定高纯碳化钨粉样品中18种杂质元素,锡测定值的相对标准偏差(RSD,n=11)为24%,除锡外其他元素的RSD(n=11)均小于10%,测定值与直流电弧原子发射光谱法(ARC-AES)结果基本吻合。因高纯碳化钨粉样品在马弗炉中氧化后主要成分为三氧化钨,因此采用实验方法对三氧化钨标准样品中18种杂质元素进行测定以验证方法正确度,结果表明,测定值与认定值基本一致。  相似文献   

15.
利用电感耦合等离子体原子发射光谱法(ICP-AES)测定高纯钼样品中杂质元素含量时,由于钼元素具有丰富的谱线,因此钼基体对待测元素干扰较大。为了消除钼基体对待测元素的干扰,实验使用过氧化氢溶解样品,过量硝酸沉淀分离钼基体作为样品前处理步骤,建立了基体分离-电感耦合等离子体原子发射光谱法测定高纯钼中钙、铬、铜、钴、镁、镍、锌、镉和锰的方法。使用4mL过氧化氢溶解样品,10mL硝酸沉淀钼基体,钼的沉淀效率大于99%,沉淀后,各待测元素背景等效浓度均有下降,且回收率都高于85%,随沉淀损失较少。使用高纯钼基体沉淀分离的方法配制校准曲线,各待测元素校准曲线线性相关系数均大于0.9997;方法中各元素的定量限为0.20~2.03μg/g。实验方法用于测定高纯钼样品中钙、铬、铜、钴、镁、镍、锌、镉和锰,结果的相对标准偏差(RSD,n=5)为2.0%~4.8%,测定结果与电感耦合等离子体质谱法(ICP-MS)结果一致。  相似文献   

16.
刘婷  李剑  李震乾  卢凡  冯婧  罗策 《冶金分析》1981,42(7):54-61
优级纯硝酸常用作试样分解或作为酸度调节剂广泛应用于试样制备过程中,因此准确可靠地监控优级纯硝酸中相关的杂质元素含量具有重要意义。先采用校准曲线法进行半定量测定,再按各元素含量的0.5倍、1.0倍、2.0倍浓度范围确定了每一元素标准加入的量,建立了普通分辨率的电感耦合等离子体质谱(ICP-MS)标准加入法直接测定优级纯硝酸中银、铝、砷、钡、铋、钙、铬、铯、铜、铁、铟、镁、锰、钠、镍、铅、铷、钯、锡、锶、铊、铀、钒、锌、硼、铪、铌、钽、钛、钨、锆含量的方法。通过质谱干扰分析并结合同位素丰度确定了待测同位素;选用动态反应池技术(DRC)测定钙、铬、铁、锰和钒这5个元素,并对各元素测定条件进行了优化,其余元素则采用标准模式测定;采用干扰校正方程来克服115Sn对115In形成的同质异位素干扰。在优化的条件下,建立各元素标准加入法的校准曲线,并用仪器软件设置为“外标法”模式的工作曲线,后续对其他优级纯硝酸进行检测时可直接在此工作曲线下进行,不需要每个样品都进行标准加入。各元素工作曲线线性相关系数r均不小于0.999,各元素检出限在0.000 3~0.114 ng/mL之间,定量限在0.001 0~0.38 ng/mL之间。将实验方法应用于优级纯硝酸样品中31种痕量杂质元素的测定。结果表明,钙和钠质量浓度超过75 ng/mL,硼、铁、镁、锌4种元素质量浓度介于5.0~11.0 ng/mL,其他元素质量浓度均小于5.0 ng/mL,测定结果的相对标准偏差(RSD,n=7)在0.89%~5.9%之间,回收率在90%~110%之间。方法不仅解决了高分辨率电感耦合等离子体质谱检测成本过高的问题,而且将样品溶解后采用标准加入法进行测定,避免了蒸发富集样品前处理方式效率相对较低、存在样品污染的风险。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号