首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 515 毫秒
1.
荚江霞  陆军  陆尹 《冶金分析》2016,36(5):58-63
使用王水并利用微波消解的方式处理样品,微波消解采用分步升温的方法,第1步升温5 min到120 ℃,维持6 min;第2步再升温5 min到180 ℃,并保持6 min。选择Si 251.612 nm、Mn 293.930 nm、P 213.618 nm、Cr 206.149 nm、Cu 324.754 nm、Co 238.892 nm、Ni 221.647 nm为分析线并设置合适的背景扣除位置,采用基体匹配法绘制校准曲线可消除基体效应的影响,利用电感耦合等离子体原子发射光谱法(ICP-AES)同时测定硅、锰、磷、铬、铜、钴、镍,建立了镍铁合金中硅、锰、磷、铬、铜、钴、镍的测定方法。各待测元素校准曲线的线性相关系数均大于0.999 5;镍铁中各元素的检出限为0.000 9%~0.003%(质量分数)。方法应用于镍铁合金标准样品JSS 760-3中硅、锰、磷、铬、铜、钴、镍的测定,结果与认定值相符,结果的相对标准偏差(RSD,n=10)为0.36%~5.2%。  相似文献   

2.
汪磊  蒙益林  高帅  颜京  李燕昌 《冶金分析》2021,41(10):69-75
海绵铪对杂质元素的种类及含量要求严格,现有检测方法难以快速、准确地测定海绵铪中钨、镍、锰、钛、钒、钼,钴、铜等8种杂质元素。实验采用硝酸、氢氟酸溶解样品,采用基体匹配法绘制校准曲线并消除基体效应的影响,使用电感耦合等离子体原子发射光谱法(ICP-AES)测定海绵铪中钨、镍、锰、钛、钒、钼、钴、铜,方法可以测定海绵铪中0.001%~0.010%(质量分数,下同)钨、镍、锰、钛、钒、钼、钴、铜。各元素质量浓度在0.10~3.00 μg/mL范围内与其发射光谱强度呈良好的线性关系,线性相关系数大于0.999;各元素检出限不大于0.000 5%,定量限不大于0.001 5%。按照实验方法测定海绵铪中8种杂质元素,结果的相对标准偏差(RSD,n=8)为4.3%~9.8%,测定结果与电感耦合等离子体质谱法(ICP-MS)一致。  相似文献   

3.
精炼镍是冶炼不锈钢的优质原材料,产品有通用镍、镍豆等,需要检验其中的杂质元素。采用硝酸(1+1)溶解样品,选择Si 251.612nm、Mn 257.610nm、P 178.217nm、Fe259.940nm、Cu 324.754nm、Co 238.892nm、Mg 279.553nm、Al 396.153nm、Zn 206.191nm、Cr 267.716nm为分析线,离峰扣背景校正法消除背景干扰,无镍基体匹配的方法绘制校准曲线,使用电感耦合等离子体原子发射光谱法(ICP-AES)测定了精炼镍中硅、锰、磷、铁、铜、钴、镁、铝、锌、铬等10种元素。方法中各元素校准曲线的线性相关系数均大于0.999 5;各待测元素的检出限为0.000 12%~0.001 9%。按照实验方法测定精炼镍样品和Nickel200标准样品中硅、锰、磷、铁、铜、钴、镁、铝、锌、铬,样品测定结果的相对标准偏差(RSD,n=11)在1.0%~10%之间,而标样的测定值和认定值相符。对精炼镍试样的加标回收率在90%~105%之间。  相似文献   

4.
利用电感耦合等离子体原子发射光谱法(ICP-AES)测定高纯钼样品中杂质元素含量时,由于钼元素具有丰富的谱线,因此钼基体对待测元素干扰较大。为了消除钼基体对待测元素的干扰,实验使用过氧化氢溶解样品,过量硝酸沉淀分离钼基体作为样品前处理步骤,建立了基体分离-电感耦合等离子体原子发射光谱法测定高纯钼中钙、铬、铜、钴、镁、镍、锌、镉和锰的方法。使用4mL过氧化氢溶解样品,10mL硝酸沉淀钼基体,钼的沉淀效率大于99%,沉淀后,各待测元素背景等效浓度均有下降,且回收率都高于85%,随沉淀损失较少。使用高纯钼基体沉淀分离的方法配制校准曲线,各待测元素校准曲线线性相关系数均大于0.9997;方法中各元素的定量限为0.20~2.03μg/g。实验方法用于测定高纯钼样品中钙、铬、铜、钴、镁、镍、锌、镉和锰,结果的相对标准偏差(RSD,n=5)为2.0%~4.8%,测定结果与电感耦合等离子体质谱法(ICP-MS)结果一致。  相似文献   

5.
胡建春  赵琎  张瑞霖 《冶金分析》2015,35(11):28-33
使用硝酸和高氯酸溶解氧化镍样品,溶液过滤后,采用恒电流电解重量法测定滤液中镍。加入10 mL 500 g/L柠檬酸铵,电解液酸度为pH 10,电解过程中所需的电解电流和电解时间为2 A/2 h。选择Ni 341.486 nm、Co 238.892 nm、Cu 324.752 nm、Zn 206.191 nm、Fe 259.940 nm、Mn 257.610 nm作为分析谱线,采用基体匹配法绘制校准曲线消除基体效应,使用电感耦合等离子体原子发射光谱法(ICP-AES)测定沉积在铂阴极上的钴、铜、锌、铁、锰,并测定电解残余液和酸不溶残渣中的镍、锰、铁。镍、铁、锰含量分别为电解在铂阴极的镍、铁、锰,电解液中残余镍、铁、锰,残渣回收浸出液中镍、铁、锰共3个部分测定值的总和。实验方法各元素的检出限为0.002 4~0.020 μg/mL,校准曲线的线性相关系数均大于0.999。按照实验方法测定氧化镍样品中镍、钴、铜、锌、铁和锰含量,测定结果的相对标准偏差(RSD,n=10)在0.11%~7.5%之间。实验方法用于氧化镍样品的测定,结果与国标方法以及原子吸收光谱法的测定结果相吻合。  相似文献   

6.
以盐酸和硝酸溶解铝镁环样品,选择Si 212.412 nm、Mn 257.610 nm、Fe 238.204 nm、Ti 334.940 nm、Cu 324.752 nm、P 187.221 nm 作为分析线,采用基体匹配法绘制校准曲线消除基体效应的影响,使用电感耦合等离子体原子发射光谱法(ICP-AES)测定铝镁环中硅、锰、铁、钛、铜、磷。各待测元素校准曲线线性相关系数均大于0.999。方法中各待测元素的检出限为0.001 1~0.020 μg/mL,测定下限为0.003 7~0.067 μg/mL。按照实验方法测定样品中硅、锰、铁、钛、铜、磷,结果的相对标准偏差(RSD,n=6)为0.62%~3.1%;各元素的回收率在89%~116%之间。按照实验方法测定样品中硅、锰、铁、钛、铜、磷,测定值与分光光度法及原子吸收光谱法测定结果相吻合。  相似文献   

7.
刘烽  吴骋  吴广宇  俞璐  胡清  徐成 《冶金分析》2018,38(5):78-82
目前髙镍铸铁已广泛用于汽车发动机等产品上,对于材料中各元素的分析,传统化学分析方法已无法满足快速检测的需求。试验探讨了不同溶解方式的溶样效果,优选了王水并采用微波消解,冷却后在消解液中滴加氢氟酸的溶解方法,测定过程采用钇内标法进行检测,从而实现了使用电感耦合等离子体原子发射光谱法(ICP-AES)同时测定高镍铸铁中硅、锰、磷、铬、镍、铜等元素的方法。在选定的仪器工作条件下,各元素的校准曲线线性相关系数均大于0.9999,各元素的检出限为0.0002%~0.0036%。实验方法用于高镍铸铁实际样品中硅、锰、磷、铬、镍、铜的测定,结果的相对标准偏差(RSD,n=8)为0.73%~5.0%;按照实验方法测定髙镍铸铁标准样品中硅、锰、磷、铬、镍、铜,结果与认定值相吻合。  相似文献   

8.
刘锦锐  加明 《冶金分析》2021,41(8):76-83
准确、快速地测定光致发光材料钼酸钙中钨、钒、铜、锰、镍、铁、锡、锑、镁、镉、铝、铅、铋、铬、砷、钛、钴、钡、硅等19种微量杂质元素,对光致发光材料钼酸钙的质量判定有重要意义。选择过氧化氢-盐酸溶解体系对样品进行前处理;采用钼基体匹配法消除基体效应对测定的影响;通过选择合适的谱线消除光谱干扰;使用电感耦合等离子体原子发射光谱法(ICP-AES)测定光致发光材料钼酸钙中上述19种微量杂质元素。方法中各待测元素校准曲线的线性相关系数均大于0.999 0;方法中各元素检出限为0.2~4.4 μg/g。按照实验方法测定光致发光材料钼酸钙中钨、钒、铜、锰、镍、铁、锡、锑、镁、镉、铝、铅、铋、铬、砷、钛、钴、钡、硅,结果的相对标准偏差(RSD,n=8)为0.61%~6.8%;加标回收率为95%~105%。按照实验方法测定实验室内控样品,测定结果与电感耦合等离子体质谱法(ICP-MS)测定结果一致。  相似文献   

9.
采用王水消解无铅焊料样品,基体匹配法绘制校准曲线消除基体干扰对测定结果的影响,建立了电感耦合等离子体原子发射光谱法(ICP-AES)测定无铅焊料中银、铜、铅、铁、锌、镉、砷、铝、锑、铋、铟、镍等12种元素的方法。在选定的实验条件下,方法中各元素的检出限在0.000 2~0.016 μg/mL之间,各元素校准曲线线性相关系数均大于0.999 5。按照实验方法测定样品,加标回收率为87%~125%,测定结果的相对标准偏差(RSD,n=6)在0.25%~5.1%之间,测定结果与参考值一致。  相似文献   

10.
李红霞 《冶金分析》2021,40(11):78-83
高铍铍铝合金是一种重要的结构材料,杂质元素含量会影响其结构性能,因此需要准确测定其含量。样品采用硫酸-硝酸分解,优选了Fe 238.204 nm、Mn 257.610 nm、Cr 267.716 nm、Ni 216.555 nm、Mg 279.553 nm作为分析谱线,采用标准加入法(MSA)绘制校准曲线消除基体效应的影响,使用电感耦合等离子体原子发射光谱法(ICP-AES)测定铁、锰、铬、镍和镁,从而建立了高铍铍铝中铁、锰、铬、镍、镁等杂质元素的分析方法,各待测元素校准曲线线性相关系数r均大于0.999 9,方法中各元素的检出限为0.000 2%~0.003 6%(质量分数,下同),定量限为0.000 7%~0.011 9%。按照实验方法测定1个高铍铍铝合金中的铁、锰、铬、镍、镁,结果的相对标准偏差(RSD,n=11)为 1.2%~4.6%,加标回收率为93%~105%;选择1个样品与辉光放电质谱法(GD-MS)比对,测定结果基本一致。  相似文献   

11.
姜晴  刘嫣 《冶金分析》2017,37(6):65-68
纯金属分析时为了消除基体效应的影响,通常需要先分离基体,再对其痕量元素进行测定,这不仅前处理过程较为复杂,还易造成样品污染。实验以硝酸(1+1)溶解样品,采用基体匹配法配制标准溶液系列以绘制校准曲线,最终实现了电感耦合等离子体质谱法(ICP-MS)对纯铟中镁、铬、锰、钴、镍、锆、钼、锑8种元素的测定。通过选择合适的同位素消除了质谱干扰;采用10ng/mL钪对元素镁、铬、锰和镍进行校正,采用10ng/mL铑对钴、钼、锑和锆进行校正,克服了基体效应和信号漂移的影响。实验表明,各元素的质量浓度在1.00~50.0ng/mL范围内与其信号强度呈一定的线性关系,相关系数均大于0.999。方法的检出限为0.09~0.78ng/mL。将实验方法应用于纯铟实际样品中镁、铬、锰、钴、镍、锆、钼、锑8种元素的测定,相对标准偏差(RSD,n=7)不大于10.2%,加标回收率为88%~114%。  相似文献   

12.
冯宗平 《冶金分析》1982,39(11):57-62
准确、快速地测定铁矿中各种杂质元素含量,对铁矿石质量判定具有重要意义。试验采用“酸溶-碱熔回渣”的方法消解样品,先用硝酸、盐酸溶解样品,再过滤,滤渣及滤纸灰化后再用碳酸钠-硼酸混合熔剂熔融,溶液中的总固体溶解量(TDS)为2.5mg/mL。采用基体匹配法绘制校准曲线消除基体效应的影响,使用电感耦合等离子体原子发射光谱法(ICP-AES)测定铝、砷、钙、铬、铜、钾、镁、锰、镍、磷、铅、硅、锡、钛、钒、锌等16种元素。各待测元素校准曲线的线性相关系数均大于0.999;方法检出限为0.00018%~0.034%。实验方法用于2个铁矿石实际样品中铝、砷、钙、铬、铜、钾、镁、锰、镍、磷、铅、硅、锡、钛、钒、锌的测定,结果的相对标准偏差(RSD,n=8)为0.40%~9.8%;按照实验方法测定4个铁矿石标准样品,测定值与认定值相吻合;测定4个铁矿石生产样品中铝、砷、钙、铬、铜、钾、镁、锰、镍、磷、铅、硅、锡、钛、钒、锌,测定值与GB/T 6730系列标准方法测定值相吻合。  相似文献   

13.
冯宗平 《冶金分析》2019,39(11):57-62
准确、快速地测定铁矿中各种杂质元素含量,对铁矿石质量判定具有重要意义。试验采用“酸溶-碱熔回渣”的方法消解样品,先用硝酸、盐酸溶解样品,再过滤,滤渣及滤纸灰化后再用碳酸钠-硼酸混合熔剂熔融,溶液中的总固体溶解量(TDS)为2.5mg/mL。采用基体匹配法绘制校准曲线消除基体效应的影响,使用电感耦合等离子体原子发射光谱法(ICP-AES)测定铝、砷、钙、铬、铜、钾、镁、锰、镍、磷、铅、硅、锡、钛、钒、锌等16种元素。各待测元素校准曲线的线性相关系数均大于0.999;方法检出限为0.00018%~0.034%。实验方法用于2个铁矿石实际样品中铝、砷、钙、铬、铜、钾、镁、锰、镍、磷、铅、硅、锡、钛、钒、锌的测定,结果的相对标准偏差(RSD,n=8)为0.40%~9.8%;按照实验方法测定4个铁矿石标准样品,测定值与认定值相吻合;测定4个铁矿石生产样品中铝、砷、钙、铬、铜、钾、镁、锰、镍、磷、铅、硅、锡、钛、钒、锌,测定值与GB/T 6730系列标准方法测定值相吻合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号