首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究了锌(Ⅱ)-硫氰酸盐-孔雀石绿(Zn(Ⅱ)-SCN--MG)体系的共振瑞利散射光谱,探讨了其形成机理,并据此建立了共振瑞利散射光谱测定锌的方法。实验表明,在pH 5.2的HAcNaAc缓冲溶液中,Zn(Ⅱ)和SCN-形成的配阴离子[Zn(SCN)4]2-与MG阳离子结合形成的离子缔合物体系有共振瑞利散射(RRS)吸收。通过试验对测定条件进行优化,确定pH 5.2的HAc-NaAc缓冲溶液用量为1.00 mL,体系中KSCN溶液和MG溶液的浓度分别为6.0×10~(-5)、2.4×10~(-5) mol/L。结果表明,Zn(Ⅱ)浓度在5.00×10-7~4.50×10-6 mol/L范围内与其对应的共振瑞利散射强度呈良好的线性关系,相关系数为0.998 9。方法检出限为8.7×10~(-9)mol/L。将实验方法应用于合成水样和黄河水样中锌的测定,结果与原子吸收光谱法(AAS)一致,相对标准偏差(RSD,n=6)均小于0.2%,回收率为97%~103%。  相似文献   

2.
在pH 7.7的磷酸盐缓冲溶液中,锌与槲皮素所形成的络合物在-1.15 V(vs. SCE)产生吸附波,加入氯酸钾后该波峰电流增加,其二阶导数峰电流与锌浓度在8.0×10-9~6.0×10-6 mol/L范围内呈线性关系,检出限(3s/N)为5.0×10-9 mol/L。研究了极谱波的性质及增敏的机理,表明该波为络合物吸附催化波。方法用于天然水样中锌含量的测定,测定结果与原子吸收光谱法一致。以样品为基体,用标准加入法做回收率试验,测得方法的回收率在96%~105%之间。  相似文献   

3.
李梅  杜芳艳  丁宇 《冶金分析》2015,35(3):37-41
研究了锌(Ⅱ)-2-(5-溴-2-吡啶偶氮)-5-二乙氨基酚-亚硝酸钠[Zn(Ⅱ)-5-Br-PADAP-NaNO2]三元络合物在碳糊电极(CPE)上的电化学行为,并建立了测定痕量锌的方波伏安法(SWV)。实验表明:在pH 5.4的六次甲基四胺-盐酸缓冲溶液中,当5-Br-PADAP浓度为3.0×10-5 mol/L,NaNO2浓度为5.0×10-5 mol/L,振幅为0.025 V,频率60 Hz时, 于-0.40 V(vs.SCE)富集45 s后,以100 mV/s的扫速在-0.40~0.60 V 区间内用SWV进行扫描,Zn(Ⅱ)-5-Br-PADAP-NaNO2络合物在0.292 V(vs.SCE)有一灵敏的吸附氧化峰。锌浓度在5.0×10-9~5.0×10-6 mol/L范围内与络合物的峰电流Ip呈现良好的线性关系,线性相关系数为0.998 9,检出限为1.7×10-9 mol/L。方法用于环境水和管网水中痕量锌含量的测定,测得结果与双硫腙光度法测定值基本一致,相对标准偏差(RSD,n=6)为1.9%~2.5%,回收率在97%~105%之间。  相似文献   

4.
在含有十六烷基三甲基溴化胺(CTMAB)的磷酸盐(PBS)缓冲溶液中,Zn2+对高碘酸钠氧化荧光桃红的反应具有显著的催化效应,催化的结果是导致其荧光强度显著减弱。据此建立了基于Zn2+和银纳米粒子协同双催化效应动力学荧光法测定痕量Zn2+的新方法。实验结果表明pH 7.8的磷酸盐缓冲溶液中,当荧光桃红、NaIO4、银纳米粒子、CTMAB溶液浓度分别为2.0×10-6 mol/L,5.0×10-3 g/L,5.0×10-6 mol/L ,1.5×10-3 g/L时,Zn2+的浓度在5×10-8 ~ 100×10-8 g/L范围内与体系的荧光强度改变值呈良好的线性关系,检出限为1.88×10-8 g/L。应用于电镀工业废水中Zn2+的检测,测定值与双硫腙光度法基本一致,相对标准偏差(RSD,n=6)≤2.5%。  相似文献   

5.
阳极溶出伏安法同时测定锌电解液中镉铜钴   总被引:3,自引:0,他引:3       下载免费PDF全文
李源  任凤莲  周恩荣  沈芳  徐亮 《冶金分析》2011,31(10):14-17
采用阳极溶出伏安法,建立了在pH 5.0的HAc-NaAc缓冲溶液中,NH4Cl溶液为支持电解质和辅助络合剂,使离子溶出峰电位差增大、峰形尖锐并消除锌离子的影响,抗坏血酸为除氧剂消除氧波干扰的检测体系,可不经预分离直接测定锌电解液中镉(Ⅱ)、铜(Ⅱ) 、钴(Ⅱ)三种金属离子。实验结果表明:在该体系中镉(Ⅱ)、铜(Ⅱ)、钴(Ⅱ)的溶出峰电位分别在-0.82、-0.22、+0.02 V;校准曲线的线性范围分别在6×10-7~2.5×10-5, 3×10-7~3×10-5,1.5×10-6~3.0×10-4 mol/L;方法的检出限分别是3×10-8,2×10-7和1×10-8 mol/L。电解液中可能存在的常见离子对测定无影响。方法用于实际样品的测定,其结果与ICP-AES方法的测定结果一致。  相似文献   

6.
杜平  商希礼 《冶金分析》2018,38(8):43-47
准确测定痕量铅,对保护人类健康具有重要意义。采用CdTe量子点和石墨烯制备了CdTe/石墨烯/玻碳(CdTe/GR/GCE)修饰电极,并通过差分脉冲伏安法测定矿石中痕量铅含量。通过循环伏安曲线考察了修饰电极在CdTe溶液中的自组装时间,浸泡时间和富集时间分别为4h、120s;测定时HAc-NaAc缓冲溶液的pH值为5.0;最佳条件下Pb2+浓度在1.0×10-8~1.0×10-4 mol/L范围内与其峰电流呈良好的线性关系,相关系数为0.9922;检出限为4.0×10-9 mol/L。利用5个修饰电极按照实验方法对1.0×10-6 mol/L Pb2+溶液检测,结果的相对标准偏差(RSD,n=6)为4.3%和5.5%(3d后);采用实验方法测定矿石中铅,结果的相对标准偏差(RSD,n=10)为2.9%~4.0%,与原子吸收光谱法(AAS)测定结果相吻合。  相似文献   

7.
研究了碘化钾-四丁基溴化铵-水体系浮选分离锗的行为及与一些金属离子分离的条件。结果表明, 在水溶液中, 锗与碘化钾和四丁基溴化铵形成不溶于水的三元缔合物[GeI62-][ TBAB+]2, 此三元缔合物浮于水相上层形成界面清晰的液-固两相。当溶液中四丁基溴化铵和碘化钾的浓度分别为9.0×10-4 mol/L和3.0×10-2 mol/L, pH值为2时, 锗可与Ce、Cr、Ni、Mg、Fe、Zn、Sn、Zr、V、Co、Mo、Mn、Al、W、Ga、Rh、U、La 和Ti定量分离。采用方法对合成水样中锗进行分离和测定, 锗的浮选率为97.8%~100%。  相似文献   

8.
王欢  张萍  王珊 《冶金分析》2014,34(6):64-67
合成了聚乙烯吡咯烷酮纳米银, 研究了聚乙烯吡咯烷酮纳米银-聚乙二醇-汞体系的荧光增强效应。研究表明, 在含有聚乙二醇的聚乙烯吡咯烷酮纳米银溶液中加入微量的汞, 聚乙烯吡咯烷酮纳米银-聚乙二醇-汞体系波长为369 nm的荧光发射强度逐渐增大, 荧光法发射强度的增加量与汞浓度的线性方程为ΔF=3.206×106c-7.083, R=0.996 4, 线性范围为4.0×10-6~3.6×10-5, 检出限为3.0×10-10 mol/L。同时, 结合紫外可见吸收光谱, 提出了聚乙烯吡咯烷酮纳米银-聚乙二醇体系与汞相互作用的机理。  相似文献   

9.
催化动力学光度法测定锌尾矿中痕量铅   总被引:1,自引:0,他引:1       下载免费PDF全文
在高氯酸-邻苯二甲酸氢钾介质中,于90 ℃水浴中加热,发现铅(Ⅱ)对碘酸钾氧化核固红的褪色反应有催化作用,据此建立了催化动力学光度法测定痕量铅的新方法。通过正交试验和方差分析确定最佳实验条件为:8.0 mL 1 g/L核固红(NFR)溶液,2.5 mL 0.02 mol/L HClO4,0.5 mL 0.02 mol/L邻苯二甲酸氢钾溶液和1.5 mL 0.02 mol/L KIO3溶液。方法线性范围为4.0×10-5~4.4×10-3 g/L,检出限为3.0×10-6 g/L。实验表明,该催化反应为假一级反应,表观活化能Ea = 29.762 kJ/mol,反应表观速率常数K = 1.2×10-4 s-1。方法用于本地锌矿尾矿中铅含量的测定,测定值与原子吸收光谱法基本一致,相对标准偏差(n=9)为1.5% ~2.1%,加标回收率为98% ~ 104%。  相似文献   

10.
碳点荧光猝灭法测定粉煤灰中痕量钴   总被引:1,自引:0,他引:1       下载免费PDF全文
罗道成  罗铸 《冶金分析》2015,35(9):62-67
在pH 6.80的B-R缓冲溶液中,基于钴离子对水溶性碳点(CDs)的荧光具有显著的猝灭作用,建立了一种测定钴离子的荧光光度法。在5 mL比色管中,依次加入0.5 mL 3.6×10-4 mol/L荧光碳点溶液(以碳计)、1.0 mL pH 6.80的B-R缓冲溶液和适量的钴离子标准工作溶液后定容,室温下反应10 min,以350 nm为激发波长,440 nm为测定波长测定体系的相对荧光强度,结果表明,钴离子浓度在2×10-6 ~7.6×10-5mol/L范围内与CDs的相对荧光强度呈良好的线性关系,其线性回归方程为ΔF=1.008 7+0.031 25×10-6 c(mol/L),相关系数r=0.998 5,方法检出限1.2×10-7 mol/L。方法用于粉煤灰中痕量钴的测定,测定结果与国家标准方法GB/T 15922-2010相符,相对标准偏差(RSD,n=6)为0.9%~1.0%,加标回收率在98%~104%之间。  相似文献   

11.
崔英  吕建晓 《冶金分析》2016,36(1):75-78
在酸性条件下,溴酸钾氧化罗丹明B发生荧光反应,锰能催化该荧光猝灭反应。实验研究了锰对溴酸钾氧化罗丹明B的荧光猝灭效应并讨论了将其应用于锰分析的最佳条件。试验表明,在50 mL比色管中,分别依次加入3.5 mL 1.0×10-6 mol/L罗丹明B溶液、1.5 mL 1.0×10-4 mol/L溴酸钾溶液、1.2 mL 0.1 mol/L盐酸及不同量的锰溶液,于60 ℃加热8 min,锰质量浓度在1.0×10-8~2.0×10-7 mol/L范围内与荧光猝灭程度呈线性响应,方法的检出限为2.0×10-9 mol/L。体系应用于水样中锰的分析,测得结果与原子吸收光谱法基本一致,相对标准偏差(RSD,n=11)为3.9%~4.2%。  相似文献   

12.
崔英  周庆生 《冶金分析》2018,38(3):65-69
在pH 6.0介质中,十二烷基苯磺酸钠(SDBS)作用下,曙红Y-藏红T能发生有效的能量转移,使藏红T荧光增强,二价锰的加入使藏红T在577nm处发生荧光猝灭,其荧光猝灭程度与锰的含量呈线性关系,由此建立了能量转移荧光测定痕量锰的新方法。试验探讨了体系的最佳条件:1.0×10-6 mol/L曙红Y溶液0.5mL、1.0×10-5 mol/L藏红T溶液4.0mL、1.0×10-3 mol/L SDBS溶液0.3mL,40℃恒温水浴中水浴加热4min。在优化条件下,锰(Ⅱ)质量浓度在0.4×10-8~6.0×10-8 mol/L范围内与荧光猝灭程度呈线性响应,方法检出限为6.0×10-9 mol/L。将该体系应用于茶叶和土壤样品中锰的测定,相对标准偏差(RSD,n=11)小于5%,回收率为93.8%~95.6%。  相似文献   

13.
基于镍离子对碲化镉(CdTe)量子点荧光具有猝灭作用,建立了对镍离子的定量检测方法。实验表明,在5 mL比色管中依次加入0.5 mL 1.5×10-4 mol/L CdTe量子点溶液(以Cd2+计)、50 μL不同镍离子浓度的标准溶液,用pH 10.0硼砂缓冲溶液定容,室温下反应10 min,以400 nm为激发波长,在荧光发射波长为608 nm处测定其相对荧光强度,CdTe量子点荧光衰减程度与镍离子浓度在2.0×10-7~7.8×10-5 mol/L范围内呈线性关系,其线性回归方程为F0/F=1.008 9+0.030 8 ρ(μmol/L),相关系数r=0.998 7,检出限为1.5×10-7 mol/L。方法用于水样中镍离子的测定,测得结果与原子吸收光谱法(AAS)一致,相对标准偏差(RSD,n=5)为5.6%。  相似文献   

14.
采用阳极溶出伏安法,建立了在ZnCl2-NH4Cl体系中,使用乙二胺四乙酸二钠(EDTA)和磺基水杨酸消除Cu2+对Pb2+测定的影响,不经预分离同时测定溶液中Pb2+和Cd2+的方法。在扫描电位为-0.80~-0.30 V、富集电位为-0.85 V、富集时间为100 s、扫描速率为0.015 V/s的优化试验条件下,Pb2+和Cd2+分别在-0.48 V和-0.68 V处有灵敏的溶出峰。溶液中可能存在的常见离子不干扰测定。Pb2+、Cd2+浓度分别在9.7×10-9~2.4×10-4、1.8×10-8~8.9×10-5 mol/L范围内与其峰电流呈良好的线性关系,相关系数分别为0.995和0.998。方法中Pb2+、Cd2+的检出限分别为3.9×10-9、1.9×10-9 mol/L。采用实验方法测定了ZnSO4电解液和ZnCl2-NH4Cl电解液中的Pb2+和Cd2+,结果的相对标准偏差(RSD,n=6)分别为0.83%~2.1%、0.56%~0.75%,回收率分别为89%~108%、92%~104%。  相似文献   

15.
杜芳艳  李梅  刘丽 《冶金分析》2015,35(5):16-19
铁-偶氮氯膦-I-硫脲配合物在0.04 mol/L的Tris-HCl缓冲溶液中(pH9.0±0.1)有一灵敏的吸附波,峰电位在-0.712 V(vs. SCE)左右,该波的二阶导数峰电流Ip与铁浓度在1.0×10-7~1.0×10-9 mol/L范围内呈线性关系(R2= 0.999 1),检出限为5.0×10-10 mol/L(S/N=3)。经多种电化学方法证明,该吸附波为配合物吸附波,其电极过程为不可逆过程,电极反应电子转移数为1。考察了多种离子对峰电流Ip的影响。所拟方法用于水样中微量铁的测定,测定结果的标准偏差为0.22%~2.7%,加标回收率在97.0% ~103.6%之间。  相似文献   

16.
王玲玲  刘雪  余萌 《冶金分析》2013,33(8):6-11
利用 L-半胱氨酸-石墨烯-L-天冬氨酸纳米复合膜构建Pb2+的新型电化学传感器实现了环境水样中铅的灵敏测定。首先将石墨烯和L-半胱氨酸通过电聚合制备了L-半胱氨酸-石墨烯修饰玻碳电极,然后利用戊二醛通过共价键合连接上L-天冬氨酸,制备了L-天冬氨酸-L-半胱氨酸-石墨烯修饰玻碳电极。由于L-天冬氨酸的良好选择性以及石墨烯的好导电性能,提高了传感器对Pb2+的信号响应和选择性。试验结果表明,测定1×10-7 mol/L的Pb2+,10倍量的Cu2+、Ca2+、Co2+、Cd2+、Mn2+、Zn2+、Ni2+、Hg2+几乎不干扰测定(峰电流改变小于5%)。在pH4.5的醋酸盐缓冲溶液中,铅离子的浓度与峰电流呈良好的线性关系,线性范围为2.0×10-9~6.0×10-6 mol/L,检出限为6.0×10-10 mol/L (S/N=3)。该修饰电极用于环境水样中铅的测定,测定值与ICP-AES的测定值基本一致。  相似文献   

17.
以2-(5-氰基-2-吡啶偶氮)-5-二甲氨基苯胺(5-CN-PADMA)做显色剂,建立了双波长叠加分光光度法测定铜的新方法。研究发现,在pH 4.0~5.0的HAc-NaAc缓冲介质中,于室温下,5-CN-PADMA与铜即可形成稳定的2:1紫红色配合物,其吸收光谱呈现两个吸收峰,分别位于548 nm和583 nm处,且两个吸收峰处的吸光度具有良好的加合性,吸光度之和与铜质量浓度线性相关。铜质量浓度在0~0.8 μg/mL范围内服从比尔定律,双波长测量的表观摩尔吸光系数为1.06×105 L·mol-1·cm-1。应用于铝合金中铜的测定,结果与火焰原子吸收光谱法一致,相对标准偏差(RSD)在0.86%~2.1%之间。  相似文献   

18.
在牛血红蛋白催化作用下,H2O2能够氧化L-酪氨酸产生荧光,而硒对该荧光体系具有较强的猝灭作用。据此,建立了一种酶催化荧光猝灭法测定痕量硒的新方法。实验从pH值、L-酪氨酸溶液浓度、H2O2浓度,牛血红蛋白溶液浓度和反应时间等方面进行了探讨。在pH 9.8的NH3·H2O-NH4Cl缓冲溶液中,当L-酪氨酸、H2O2和血红蛋白的浓度分别为7.5×10-5 mol/L、1.0×10-4 mol/L和 2.0×10-7 mol/L时,测定硒的线性范围为0.3~50 μg/mL,方法的检出限为0.05 μg/mL。方法应用于富硒花生土壤中痕量硒的测定,测定值与原子吸收光谱法的测定值基本一致,相对标准偏差为4.6%~4.9%。  相似文献   

19.
钒对牛血红蛋白模拟酶催化过氧化氢氧化罗丹明B体系有强烈的抑制作用, 据此建立了酶催化分光光度法测定痕量钒的新方法。试验从pH值、罗丹明B浓度、过氧化氢浓度、牛血红蛋白浓度和反应时间等方面探讨了体系的实验条件。在pH 9.8的NH3·H2O-NH4Cl缓冲溶液中, 当罗丹明B、H2O2和血红蛋白的浓度分别为1.5×10-5 mol/L、1.5×10-4 mol/L和 2.0×10-6 mol/L时, 测定钒的线性范围为3.1×10-4 ~6.2×10-3 g/L, 方法的检出限为2.1×10-6 g/L。1 000倍Na+、K+、Cl- 、NO3-、NH4+ 、F-、BrO3-, 500倍Ca2+、Fe3+ 、Al3+、 Mn2+、Ba2+、CO32-, 100倍C2O42-, 5倍Cu2+对钒的测定没有干扰。对环境水样中痕量钒进行测定, 结果的相对标准偏差(n=7)为3.7%, 与萃取分光光度法的结果基本一致, t检验结果表明两种方法没有显著性差异。  相似文献   

20.
采用涂滴法将石墨烯(GR)-二氧化锰(MnO2)分散液滴在玻碳电极(GCE),然后利用循环伏安法将离子液体(OMIMPF6)聚合制备得OMIMPF6/GR/MnO2/GCE复合材料修饰玻碳电极,建立了差分脉冲伏安法测定土壤中铅和镉的方法。实验表明,以4μL 2mg/mL的石墨烯-二氧化锰混合物分散液涂滴,电聚合离子液体30圈所制备的修饰电极,在0.1mol/L的醋酸-醋酸钠缓冲溶液(pH4.5)的支持电解液中,Pb2+和Cd2+的氧化峰电流值相对较高。Pb2+和Cd2+的浓度均在5.0×10-8~1.4×10-5mol/L范围内呈良好线性关系,Pb2+和Cd2+检出限分别达到5.0×10-10mol/L和4.0×10-9mol/L。对含10μmol/L Pb2+和10μmol/L Cd2+的标准混合溶液平行测定9次和连续扫描30次,Pb2+和Cd2+峰电流值的相对标准偏差均分别小于1.3%和4.3%,说明该修饰电极具有良好的重现性、稳定性。采用建立的方法用于土壤中铅和镉的检测,测得结果与原子吸收光谱法(GB/T 17141—1997)基本一致,相对标准偏差(RSD,n=6)均小于5.3%,回收率在97%~105%之间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号