首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
氢化物发生-原子荧光光谱法测定锌锭中锡铅锑铋   总被引:1,自引:1,他引:1       下载免费PDF全文
锌锭样品用盐酸溶解后,在氨性介质中加入Al3+,锡铅锑铋离子与氢氧化铝共沉淀后,用盐酸(2+98)溶解沉淀,氢化物发生-原子荧光光谱法测定锡铅锑铋。选择0.10 mol/L的Al3+加入量为4.0~5.0 mL,共沉淀时间为30 min,用10 mL 0.1 mol/L的氨水洗涤沉淀符合共沉淀要求且不会造成沉淀损失。基体锌及试液中引入的Al3+对测定均不产生干扰。方法用于锡铅锑铋的质量分数大于0.001%的锌锭中几种离子的测定,结果满足分析要求。  相似文献   

2.
鲁青庆 《冶金分析》2004,24(Z1):239-241
介绍了用原子荧光光谱法测定铅电解液中的砷.确定了试验的最佳条件,在选定的最佳仪器工作条件下,测定砷的检出限为0.01μg/mL,回收率为98.15%~103.20%,RSD为1.94%~4.05%.方法简便、快速、准确.在实际应用中获得满意结果.  相似文献   

3.
文章提出了用ICP—AES法直接测定海绵铁As、Sn、Pb、Sb、Bi含量的方法,建立了最佳工作条件。对各元素的分析线进行了选定,考察了干扰情况、介质酸度等对测定结果的影响。方法准确,快速简便,重现性好。  相似文献   

4.
5.
赵琎  胡建春 《冶金分析》2015,35(6):31-34
采用10 mL硝酸(1+1)低温加热至沸溶解0.100 0 g试样,在优化仪器参数的基础上,通过选择合适的同位素以避免质谱干扰和采用标准加入法绘制校准曲线以消除基体效应,建立了电感耦合等离子体质谱法(ICP-MS)测定高纯镍板中砷、锡、锑、铅、铋的方法。各元素校准曲线的相关系数为0.999 2~0.999 9,方法检出限为0.009~0.047 μg/g。方法应用于高纯镍板实际样品分析,测得结果的相对标准偏差(RSD, n=9)为2.4%~5.4%,加标回收率为95%~106%。方法测定高纯镍板实际样品的结果与原子吸收光谱法(AAS)相吻合。  相似文献   

6.
采用单因素法对Aurora-Lamina3300型原子荧光光谱仪在测定钼粉及钼制品中砷铋锑时的仪器工作条件进行了分析,研究确定了仪器在测定砷铋锑时的最佳工作条件分别为:灯电流90 mA、100 mA、80 mA,原子化器高度8 mm,负高压300 V、350 V、320 V,载气流量400 mL/min、400 mL/min、300 mL/min和屏蔽气流量700~800 mL/min。  相似文献   

7.
研究了两种高纯铅,即铅-05(Pb 99.999%)和铅-06(Pb 99.9999%)中微量砷的氢化物发生-原子荧光光谱法测定方法,样品用HNO3溶解后,加入HCl形成氯化铅沉淀分离主体铅,用硼氢化钾还原砷为砷化氢,原子荧光光谱法测定砷量。方法简单,平均回收率达到110%,适应于高纯铅中0.01×10-4%~0.6×10-4%砷的测定。  相似文献   

8.
采用氢化物发生-原子荧光光谱(HG-AFS)法测定红土镍矿中砷、锑、铋含量,并对影响其光谱测量的各种因素进行了较为详细的探讨。实验中,以王水水浴法溶解样品降低待测元素的挥发损失,以硫脲和抗坏血酸混合溶液为掩蔽剂来消除干扰元素的影响。方法的检出限在0.10~0.25 ng/mL之间;对红土镍矿样品中的砷、锑、铋进行分析,其回收率在91%~113%之间,相对标准偏差(RSD)为1.9%~7.6%。  相似文献   

9.
准确测定镍铬合金中砷、硒、锡、锑、铅和铋含量,对镍铬合金的生产、应用具有重要意义。考虑到被测元素砷和硒的易挥发性质,采用10 mL盐酸-1 mL硝酸溶解镍铬合金,选用75As、77Se、120Sn、121Sb、208Pb和209Bi为测量同位素,采用铑内标校正砷、硒、锡、锑的测定;铼内标校正铅、铋的测定,建立了电感耦合等离子体质谱法(ICP-MS)测定镍铬合金中砷、硒、锡、锑、铅和铋含量的方法。实验表明,在200 ℃加热蒸发样品溶液中Cl,将盐酸介质转化为硝酸介质,可消除多原子离子40Ar35Cl+40Ar37Cl+75As、77Se的干扰。对测定介质进行了进一步优化,确定以2%(V/V)盐酸为介质测定锡、锑、铅、铋含量;以2%(V/V)硝酸-乙醇为介质测定砷、硒含量。在优化的实验条件下,在2.00~25.00 ng/mL范围内,被测元素与相应内标元素信号强度的比值与被测元素质量浓度呈良好的线性关系,相关系数大于0.999 5。各元素的检出限为0.012~0.21 ng/mL,定量限为0.04~0.70 ng/mL。采用实验方法测定镍铬合金中砷、硒、锡、锑、铅和铋含量,测定结果与原子荧光光谱法(AFS)基本一致,相对标准偏差(n=11)为5.4%~12%,加标回收率为96%~120%。  相似文献   

10.
建立了电感耦合等离子体质谱法(ICP-MS)同时测定铁精矿中铬、砷、锡、镉、锑、铅和铋等元素含量的方法。确定使用无水碳酸钠和硼酸的混合熔剂于950 ℃熔融样品,用盐酸浸取熔融物以测定锡、锑、铋,用硝酸溶液浸取熔融物以测定铬、砷、镉、铅。优化了仪器的工作参数;通过选择合适的测定同位素消除了可能存在的质谱干扰;测定铬、砷、镉、锡、锑时选用铑内标,测定铅、铋时选用铊内标校正基体效应和仪器信号漂移。采用本方法对铁精矿样品进行分析,测得结果与电感耦合等离子体原子发射光谱法(ICP-AES)基本一致,相对标准偏差为4.3%~8.6%。  相似文献   

11.
基于交流电弧是依靠固体进样技术而不需要酸溶或碱熔分解样品,操作简便、绿色环保、稳定性好,且摄谱仪能实现数据直读等优点,建立了以交流电弧光电直读发射光谱测定地球化学样品中银、硼、锡等3元素的分析方法。用光谱样品全自动搅拌机混匀样品,1次能混匀30件,提高了分析效率。对实验条件进行了最佳优化,选用一级激发电流3A,起弧3s后升到二级激发电流15A,保持22s,共截取曝光时间为25s;采用锗(Ge)为内标元素,并且银元素与长波锗元素组成分析线对,硼和锡与短波锗元素组成分析线对,灵敏度高;选择基体组分与样品相类似的岩石、土壤、水系沉积物和矿石等14种国家一级地球化学标准物质作为标准系列,建立二次方程拟合校准曲线,避免了基体干扰的影响;采用差值法背景校正,曲线平滑,相关系数好,测定高含量值样品时,差值法背景校正与不扣背景的测定结果可能相差不大,但对于测定低含量值的样品,差值法背景校正结果较好。结果表明:在最佳的实验条件下,各元素测定结果的相对标准偏差(RSD)均小于10%;测定范围较宽,银、硼、锡的检出限分别为0.016、0.63、0.32μg/g;采用国家一级地球化学标准物质验证方法准确度,测定值与认定值吻合,3元素测定平均值与认定值的对数差值的绝对值(ΔlgC)均小于0.05,满足多目标地球化学填图中对于方法准确度的要求。  相似文献   

12.
研究了电感耦合等离子体原子发射光谱法(ICP-AES)同时测定钨铁中铅、锡、铋含量的分析方法。试样经草酸-过氧化氢分解后,在pH≥9的氨性条件下,铅、锡、铋生成沉淀与钨分离。经两次氨水沉淀分离后,试液中钨的质量分数小于0.7%。采用背景校正方式可以消除少量钨的谱线干扰;铁对铅、锡信号有抑制作用,用基体匹配方法克服。该法加标回收率在96%~102%之间,相对标准偏差(n=11)为1.3%~5.5%。  相似文献   

13.
钼铁作为冶炼过程中钼元素的加入剂,为保证冶炼质量,需对砷、锡、锑、铋含量进行严格控制,采用国标方法或原子荧光光谱法,只能单个元素分别检测,分析速度慢,周期长。实验通过氢化物发生法使砷、锡、锑、铋在0.264mol/L硼氢化钠-40%盐酸的酸还原体系下还原为挥发性共价氢化物,然后借助载气流将其导入电感耦合等离子体原子发射光谱仪中进行测量,从而建立了氢化物发生-电感耦合等离子体原子发射光谱法(ICP-AES)测定钼铁中砷、锡、锑、铋的方法。确定各元素的分析谱线为As 193.759nm、Sn 189.989nm、Sb 217.581nm、Bi223.061nm;为了消除基体效应的影响,采用基体匹配法配制标准溶液系列绘制校准曲线,各元素的校准曲线线性相关系数均不小于0.999;砷、锡、锑、铋的检出限分别为0.0003%、0.0009%、0.0009%、0.001 2%。方法应用于钼铁试样中砷、锡、锑、铋的测定,结果的相对标准偏差(RSD,n=6)为3.1%~4.8%;各元素加标回收率为92%~110%。  相似文献   

14.
钼铁作为冶炼过程中钼元素的加入剂,为保证冶炼质量,需对砷、锡、锑、铋含量进行严格控制,采用国标方法或原子荧光光谱法,只能单个元素分别检测,分析速度慢,周期长。实验通过氢化物发生法使 砷、锡、锑、铋在0.264mol/L硼氢化钠-40%盐酸的酸还原体系下还原为挥发性共价氢化物,然后借助载气流将其导入电感耦合等离子体原子发射光谱仪中进行测量,从而建立了氢化物发生-电感耦合等离子体原子发射光谱法(ICP-AES)测定钼铁中砷、锡、锑、铋的方法。确定各元素的分析谱线为As 193.759nm、Sn 189.989nm、Sb 217.581nm、Bi 223.061nm;为了消除基体效应的影响,采用基体匹配法配制标准溶液系列绘制校准曲线,各元素的校准曲线线性相关系数均不小于0.999;砷、锡、锑、铋的检出限分别为0.0003%、0.0009%、0.0009%、0.0012%。方法应用于钼铁试样中砷、锡、锑、铋的测定,结果的相对标准偏差(RSD,n=6)为3.1%~4.8%;各元素加标回收率为92%~110%。  相似文献   

15.
范丽新  陆青 《冶金分析》2017,37(5):68-72
一般测定样品中高含量铅时,多采用硫酸铅沉淀分离-EDTA滴定法测定,而将此法应用于测定粗锡中铅含量时,锡和铋的干扰不可忽略。实验选择在聚四氟乙烯烧杯中以盐酸-硝酸-高氯酸、盐酸-高氯酸-氢溴酸溶样,在此条件下样品中锡可与氢溴酸反应生成溴化锡而被挥发除去,将溶液经硫酸铅沉淀分离后,于滴定前加入巯基乙酸以掩蔽铋,在乙酸-乙酸钠缓冲体系中,以二甲酚橙为指示剂建立了EDTA滴定法测定粗锡中铅含量的方法。试验进一步对沉淀陈化时间、乙酸-乙酸钠缓冲溶液加入量、微沸时间等条件进行了优化,确定最佳条件如下:陈化时间为2h、pH值为5.5~6.0的乙酸-乙酸钠缓冲溶液加入量为30mL、微沸时间为10min。将实验方法应用于测定粗锡中铅,测得结果与电感耦合等离子体原子发射光谱法(ICPAES)基本一致,相对标准偏差(RSD,n=11)为0.68%和0.38%,加标回收率为98%~102%。  相似文献   

16.
超细碳化钨(WC)主要用于生产棒材硬质合金,一般含有0.1%~1.0%的碳化钒(VC)或碳化铬(Cr3 C2),具有细化晶粒作用,提高棒材合金强度.超细碳化钨中痕量元素对合金性能具有重要的影响.因此建立一种快速测量超细碳化钨中痕量元素检测方法具有重要的生产指导意义.实验采用直流电弧原子发射光谱仪,建立了快速测量超细碳化...  相似文献   

17.
交流电弧发射光谱法测定地球化学样品中银锡硼   总被引:2,自引:0,他引:2       下载免费PDF全文
对于地球化学样品中银、锡、硼元素的检测通常采用电弧原子发射光谱法,但是,传统的分析方法需要依靠相板记录,采用计算机定量译谱,分析过程繁琐,而且分析结果受相板质量及人为因素影响较大。采用改装后具有直读功能的CCD-I型交流电弧发射光谱仪,可对地球化学样品中的痕量银、锡、硼进行快速测定,取代了传统的相板记录及洗相译谱等繁琐的操作程序,提高了测试效率。实验建立了交流电弧发射光谱法测定地球化学样品中银、锡、硼的分析方法,试验了不同缓冲剂及工作条件对银、锡、硼测定的影响。选择K_2S_2O_7、Al_2O_3、NaF、KI和碳粉的混合物为固体缓冲剂,采用内标法,以锗(Ge)作为内标元素;选择合适的分析线对,以不同的激发时间进行摄谱绘制各元素的蒸发曲线,得出最佳激发时间为30s。通过扣除分析线和内标线背景,能有效消除基体对测定结果的影响,得到了较好的分析结果,各元素校准曲线的相关系数均不小于0.999 0。在优化的实验条件下,方法检出限为:0.015μg/g(银),0.45μg/g(锡),0.90μg/g(硼)。选取7个国家一级地球化学标准物质进行精密度考察,各元素测定结果的相对标准偏差(RSD,n=12)均小于10%;采用实验方法对岩石、土壤、水系沉积物国家一级标准物质进行测定,结果与认定值相符。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号