首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 216 毫秒
1.
在硫酸介质中, 痕量铊(Ⅲ)与碘化钾反应生成I3-, I3-与罗丹明6G形成1∶1缔合物, 可导致共振光散射明显增强, 据此建立了共振光散射测定痕量铊的新方法。考察了它们的光谱特征:罗丹明6G溶液的共振荧光峰波长为540 nm, (Rh6G-I3)n缔合微粒共振散射峰波长为330、420、580 nm。通过条件试验确定0.4 mL 0.2 mol/L硫酸作为反应介质、0.1 mol/L KI溶液用量为0.4 mL、1.0×10-4 mol/L罗丹明6G 溶液用量为0.4 mL、反应时间为5 min。进一步考察发现, 在580 nm波长, 共振散射光强度增加值与溶液中铊浓度呈线性关系, 方法的线性范围为0.005~0.10 mg/L, 检出限为0.001 2 mg/L。方法应用于工业废水中铊含量的测定, 结果与ICP-MS法的对照结果基本一致, 相对标准偏差(RSD, n=6)为1.8%~3.2%。  相似文献   

2.
研究了铬 与碘化物和罗丹明 6G形成离子缔合物的共振光散射增强现象 ,拟定了一种新的测定铬 的共振光散射方法。通过试验确定了适宜的反应条件及共振光散射强度与铬 浓度之间的关系。在λ =610nm处 ,共振光散射最强 ,且共振光散射强度与铬 浓度呈线性关系 ,线性范围为 3.1× 10 - 3~ 0.3 5 μg/mL ,检出限为 3.1μg/L。  相似文献   

3.
在稀硫酸介质中,痕量Cr(Ⅵ)对过氧化氢-中性红的反应体系具有催化作用,使体系的荧光强度增强,且Cr(Ⅵ)的质量浓度在80~48.0 μg/L范围内与荧光强度的改变值(△F)呈线性关系,据此建立了催化荧光光度法测定Cr(Ⅵ)的新方法。该体系的激发和发射波长(λex和λem)分别为547 nm和648 nm。通过实验测得催化反应的表观速率常数k和反应活化能Ea分别为8.05×10-2s-1和31.47kJ·mol-1,Cr(Ⅵ)的检出限为4 μg/L。将本方法用于合成水样和冶金工业废水中Cr(Ⅵ)的测定,所得结果与二苯碳酰二肼分光光度法测得值吻合,相对标准偏差(RSD, n=5)小于4%。  相似文献   

4.
利用下列组装的固体电解质定氧电池:
Mo|Mo,MoO2‖ZrO2(MgO)‖[Nb],NbO2|Mo+ZrO2金属陶瓷,Mo对Fe-Nb熔体中Nb的活度在三个温度下(1823、1853及1873K)进行研究。在净化的氩气气氛下,将固态NbO2细粉撒布在含铌铁液之上,以取得[Nb]与[O]的反应迅速达到平衡。有时不加任何固体料,使熔体中形成的脱氧产物自己上浮,此脱氧产物热力学证明是NbO2。对测定的a0实验数据进行加工处理,求出下列结果:
1.脱氧反应的自由能
[Nb]+[O]=NbO2(s); △G°=-89710+28.27T
2.Nb在铁液中的溶解自由能
Nb(s)=[Nb]%; △G=-32090+7.9T; γ$\\mathop 1\\limits^{\\rm{^\\circ }} $873=1.60
Nb(l)=[Nb]%; △G°=-38520+10.24T;γ$\\mathop 1\\limits^{\\rm{^\\circ }} $873=0.92
3.Nb本身的活度相互作用系数
${\\rm{e}}_{{\\rm{Nb}}}^{{\\rm{Nb}}} = \\frac{{2274}}{{\\rm{T}}} - 1.44$
1873K的${\\rm{e}}_{{\\rm{Nb}}}^{{\\rm{Nb}}} = - 0.22$
当(Nb)含量大约低于0.2时,脱氧产物和其他合金元素如Al、Cr、V等相似,形成了复合氧化物如FeO·NbO2。后者的生成自由能估计为:
Fe(1)+$\\frac{3}{2}$O2+Nb(s)=FeO·NbO2(s);△G°=-383800+121.95T
随着熔体中(Nb)含量的继续下降,对生成其他脱氧产物的可能性,本文也进行了讨论。  相似文献   

5.
采用40 t EBT电弧炉40 t LF 150mm × 150mm方坯连铸工艺 ,开发了成分(%)为: 0.17~0.25C,1.20~1.45Mn,0.02~0.04Nb的400 MPaⅢ级Φ10~25mm铌微合金化钢筋。钢筋的力学性能为σs 420~490 MPa ,σb 590~680 MPa ;δ5 24%~30% ,自然时效8周后屈服强度下降较少。生产的Nb微合金化400 MPa Ⅲ级钢筋符合GB1499-1998标准要求。用0.02 %~0.04%Nb取代0.05%~0.10%V时,吨钢成本显著降低。  相似文献   

6.
钇-钙黄绿素-吐温80体系荧光光度法测定痕量钇   总被引:1,自引:0,他引:1       下载免费PDF全文
在硼酸-硼砂缓冲溶液介质中,表面活性剂吐温80的存在下,痕量钇离子能显著提高钙黄绿素的荧光强度,据此建立了一种测定痕量钇的新体系。考察了荧光体系的光谱特征,研究了试剂用量、酸度、温度、时间及共存离子对测定的影响。结果表明,体系的最大激发波长(λex)和发射波长(λem)分别为492和512 nm,钇的含量在0.04~2.0 μg/mL范围内与△F呈良好的线性关系,其回归方程为△F=2.384ρ+3.264 8,相关系数为0.996 1,检出限为0.023 μg/mL。此法用于醋酸铈中钇的测定,测定结果与电感耦合原子发射光谱法一致,相对标准偏差(RSD,n=6)为1.4%~2.1%。  相似文献   

7.
采用巯基丙酸(MPA)做稳定剂,在碱性介质中合成水溶性好、半峰宽窄、颗粒分散均匀的碲化镉(CdTe)量子点。在双硫腙存在的情况下,根据CdTe量子点荧光强度的恢复程度与铅离子浓度成正比的现象,建立了基于CdTe量子点荧光开关测定铅离子的新方法。在比色管中加入1 mL 2.5×10-4 mol/L CdTe量子点溶液(浓度以Cd2+计)、适量pH 10.0的硼砂缓冲溶液、1 mL 90 μmol/L的双硫腙乙醇溶液,充分反应5 min后,加入不同浓度梯度的Pb2+标准溶液,用pH 10.0的硼砂缓冲溶液定容至5 mL后放置5 min,于激发波长/荧光发射波长(λexem)为400 nm/600 nm测定体系的相对荧光强度。结果发现,铅离子浓度在2.0×10-6~9.0×10-5 mol/L范围内与其对应的相对荧光强度具有良好的线性关系,相关系数r=0.997 6,方法检出限为3.3×10-7 mol/L。采用实验方法对土壤和湖水样品中的铅进行测定,结果与原子吸收光谱法(AAS)基本一致,相对标准偏差(RSD,n=6)为0.99%~1.0%,回收率为95%~105%。  相似文献   

8.
基于在0.015mol/L磷酸中,碘(V)与过量的I^-反应生成I3-,I3^-进一步与溴化十六烷基三甲基铵(CTMAB)反应成1:1离子缔合物,导致共振光散射(RLS)明显增强,建立了共振光散射法测定痕量碘的新方法。试验了酸度、试剂用量、温度和时间的影响,确定了最佳测定条件。最大共振光散射峰位于469nm,共振光散射增强量与碘(V)含量在0.02~0.83μg/mL范围内线性关系良好,方法的检出限为0.425μg/L。大量的共存离子不影响测定,Fe^3+,Pb^2+,Cu^2+的干扰用EDTA消除。方法用于测定磷矿中碘,结果与碘篮分光光度法一致,相对标准偏差小于0.37%(n=5),加标回收率为99.2%~101.0%。  相似文献   

9.
以硝酸和磷酸(V (HNO3)∶V(H3PO4)=5∶1)作为消解试剂,采取高压密闭微波加热方法对钨钴或钨镍类钨基硬质合金样品进行消解,消解液用水定容后直接以电感耦合等离子体原子发射光谱法(ICP-AES)测定0.005%~10% Co、Ni和0.005%~1% Fe、Nb、Ta、V、Cr、Mo的含量。考察了消解试剂中的硝酸和磷酸量对试样消解的影响以及微波控制参数等最佳消解条件,建立了微波消解-无机试剂络合基体钨的样品消解方法,从而避免了因钨酸沉淀析出而导致部分待测元素损失和使用有机络合剂对光谱测定的干扰影响。实验结果表明:采用以5 min升温至130 ℃并保持5 min,再以5 min升温至190 ℃并保持15 min的消解程序,样品的消解效果较好。试验通过优选元素分析谱线,基体匹配和同步背景校正法消除了高钨基体的影响和光谱干扰,确保了方法的可靠性。背景等效浓度值从5 μg/L (Nb)至18 μg/L(Fe),元素检出限从4 μg/L (Nb)至13 μg/L (Fe)。方法用于钨基硬质合金样品中上述合金或杂质元素的测定,RSD<3%,加标回收率在97%~104%之间,测定结果与国家标准方法检测结果对照一致。  相似文献   

10.
CO-CO2混合气与Fe-Nb-C熔体和NbO2(s)的平衡实验是在Al2O3或ZrO2坩埚中进行的。实验表明,在1073~1273K间的低温下产生碳沉积是不可避免的。熔体上方的气相氧分压用固体电解质电池测定。与熔体中Nb成平衡的氧化物被确定为NbO2(s)。测得1823K时反应[Nb]+O2=NbO2(s)的平衡常数K=6.31×1010,因此,可得反应的标准自由能:
ΔG°=-377150(J/mol)
求出了碳对Nb和Nb对碳的活度相互作用系数为:
${\\rm{e}}\\frac{{\\rm{C}}}{{{\\rm{Nb}}}}$=-0.74;${\\rm{e}}\\frac{{\\rm{C}}}{{{\\rm{Nb}}}}$=-0.092  相似文献   

11.
康元  赵婕  潘慧 《冶金分析》2014,34(10):57-60
探究了钛铌合金的溶解及使用电感耦合等离子体原子发射光谱(ICP-AES)测定该合金中高含量铌的方法。实验采用硫酸和氢氟酸溶解钛铌合金,在优化的操作条件下,采用基体匹配法和内标法相结合的方法消除干扰。选择波长Nb 269.7 nm谱线为分析线,钒作为内标元素、268.7 nm波长的谱线作为内标线。方法的线性范围为0.5%~95%,线性相关系数r=0.999 7。用于Ti-45Nb合金中铌的测定,相对标准偏差(n=6)为0.46%,加标回收率在99%~102%之间。方法快速、准确, 可用于钛铌合金中高含量铌的测定。  相似文献   

12.
向钢中添加铌元素,利用其在不同工艺下析出量与固溶量的不同,可以改善钢材质量与性能。因此分析钢中析出铌对于研究铌在钢中的强化机理、改进工艺具有重要意义。用50g/L氯化钾+10g/L柠檬酸的水溶液,在5~10℃下以电流密度0.05A/cm2进行恒电流电解提取铌微合金化钢中析出物,以王水、硫酸作为溶剂对聚碳酸酯滤膜和提取物进行微波消解处理,加入酒石酸作为络合剂抑制铌的水解,以电感耦合等离子体原子发射光谱仪(ICP-AES)测定钢中化合铌含量。研究表明,通过微波消解仪可以将聚碳酸酯滤膜和提取物完全溶解,加入5mL酒石酸溶液(200g/L)即可达到完全络合铌的目的。以干扰较少的Nb 316.340nm为分析谱线,并使校准曲线和试样在处理方式上保持一致以消除物理干扰等不利因素。校准曲线线性相关系数大于0.9997,方法检出限为0.0062mg/L。对3个钢种的化合铌含量进行测定,相对标准偏差在0.12%以内;并与国家标准方法GB/T 223.40—2007进行比对,结果相符。实验方法可以满足对铌微合金化钢中化合铌的提取与测定,结果可靠。  相似文献   

13.
于秀兰  张嘉月 《冶金分析》2013,33(12):67-69
合成了5-(4-安替吡啉偶氮)水杨醛(AASA),探讨了试剂与铌的显色反应条件,建立了测定铌的光度分析新方法。实验表明,在pH 2.0的HCl-KCl缓冲体系中,铌与AASA形成摩尔比为1∶1的浅黄色络合物,最大吸收波长为460 nm。铌 的质量浓度在0~1.6 μg/mL符合比尔定律,其回归方程为A=0.077 79+0.012 91ρNb(μg/25 mL),相关系数r=0.999 6,表观摩尔吸光系数为3.0×104 L·mol-1·cm-1。将AASA分光光度法应用于铁-铌合成溶液中铌的测定,结果与氯磺酚S法一致,相对标准偏差为1.6%~1.7%。  相似文献   

14.
华阳川铀铌铅多金属矿石中的金属离子被硅晶核包裹,不易浸出,且铌元素易水解沉淀,这些均给测定样品中铌带来了难题。实验采用氢氟酸、硝酸、酒石酸混酸体系以微波消解法处理样品,以Nb 309.418 nm为分析谱线,建立了电感耦合等离子体原子发射光谱法测定华阳川铀铌铅多金属矿石中铌的方法。确定微波消解的程序为:0~30 min从室温达到180 ℃,30~60 min从180 ℃到200 ℃,60~90 min鼓风降温。实验表明:铌的质量浓度在0.10~2.00 μg/mL范围内与其发射强度呈线性关系,线性相关系数为0.999 946,方法检出限为0.002%。因样品中主成分二氧化硅绝大部分在样品制备时已和氢氟酸反应生成四氟化硅逸出,而样品溶液中其他共存元素的质量浓度均不大于80 μg/mL,故基体效应可忽略。采用实验方法测定铌质量分数为0.030 2%~0.189%的华阳川多金属矿石样品,6次平行测定结果的相对标准偏差(RSD)为3.1%~3.9%。考虑到铌钽元素通常伴生,元素性质十分相近,且矿性高度相似,所以实验采用有铌认定值的钽矿石标准物质为测定对象,按照实验方法进行测定,测得结果与认定值基本一致。采用国家标准方法GB/T 17415.2—2010和实验方法进行方法对照,结果表明,二者对华阳川多金属矿石样品中铌的测定结果基本一致。  相似文献   

15.
采用硫酸和硝酸溶解样品,加入草酸铵溶液以溶解试样处理中形成的盐类和防止试液中铌、钨和锆水解,在优化仪器工作参数条件下用电感耦合等离子体原子发射光谱法(ICP-AES)测定试液中铌、钨、锆含量,从而建立了钢中铌、钨和锆的测定方法。研究表明:通过加热,0.1 g钢样能溶解于15 mL硫酸(1+4)和几滴硝酸中,且冒硫酸烟后出现的盐类,加入10 mL 4.0 g/L草酸铵溶液可将其溶解完全。以Nb 316.340 nm,Zr 343.823 nm,W 207.011 nm为分析谱线,采用基体匹配方法克服基体干扰。待测元素校准曲线相关系数大于0.999 5,铌、钨和锆的检出限分别为 1.9、9.9 和 3.2 ng/mL。方法应用于YSBC11217-94低合金钢标准样品中铌、钨和锆的测定,结果与认定值相符,相对标准偏差(n=10)分别为1.7%,1.1%和2.1%,加标回收率在97%~104%之间。对其他标准样品(合金钢、合金结构钢、低合金钢)及合成钢样品中铌、钨、锆进行测定,测定值与认定值或参考值相符。  相似文献   

16.
采用硝酸、氢氟酸和高氯酸冒烟溶解样品,选取Nb 322.548nm、V 310.230nm和Zr 319.418nm为分析谱线,采用基体匹配法配制标准溶液系列并绘制校准曲线消除基体效应的影响;使用电感耦合等离子体原子发射光谱法(ICP-AES)同时测定铌、钒和锆,从而建立低碳低钛硅铁中铌、钒和锆的测定方法。共存元素的干扰校正试验表明,样品中共存元素对待测元素无干扰影响。各待测元素校准曲线的线性相关系数均大于0.9995;各元素的检出限分别为0.0006%,0.0005%和0.0005%。实验方法应用于低碳低钛硅实际样品中铌、钒、锆的测定,结果的相对标准偏差(RSD,n=10)为1.2%~4.7%,回收率为98%~104%。按实验方法测定低碳低钛硅铁样品中铌、钒、锆,测定结果与YB/T 4395—2014、GB/T 223.14—2000和GB/T 223.30—1994测定值相符。  相似文献   

17.
在电感耦合等离子体原子发射光谱法(ICP-AES)测定钢中铌时,铌的常用谱线Nb 316.340 nm在多款电感耦合等离子体原子发射光谱仪中未找到,因而有必要选择其他可用分析谱线。实验选择Nb 269.706 nm作为分析谱线,选用多元谱线拟合(MSF)校正谱线干扰,建立了ICP-AES测定钢中铌的方法。结果表明,铁对Nb 269.706 nm有光谱干扰,导致利用含铌钢标准物质绘制的校准曲线的线性关系较差,严重影响了ICP-AES分析结果的准确性。采用多元谱线拟合校正铁对Nb 269.706 nm的谱线干扰后,校准曲线的线性相关系数为0.999 9,方法检出限为0.000 7%。按照实验方法测定含铌钢实际样品中铌,结果的相对标准偏差(RSD,n=6)为1.4%~11%,回收率为92%~101%;含铌钢标准物质中铌的测定结果与标准值吻合较好,证实了方法的准确性。  相似文献   

18.
采用盐酸、硝酸、氢氟酸分解试样,冒磷酸和高氯酸烟,如需要可加内标元素钇,加酒石酸溶液,采用电感耦合等离子体原子发射光谱法(ICP-AES)测定钢中钨、钼和铌。在优化仪器工作条件的基础上,综合考虑灵敏度和干扰情况选择最合适的分析线为W 207.911nm、Mo 202.030nm、Mo 281.615nm、Nb 309.418nm、Nb 316.340nm,并考察了可能的干扰元素。标准溶液系列与被测样品主体元素进行基体匹配,消除了基体效应的影响。各元素校准曲线线性相关系数均大于0.998,钨、钼、铌的检出限分别为0.0370、0.0379和0.0629mg/L。实验方法适用于钢中质量分数为0.005%~19.0%钨、0.005%~8.0%钼和0.005%~5.0%铌的测定,国内7家获得中国合格评定国家认可委员会认可的钢铁行业实验室之间的精密度试验证明方法具有良好的重复性和再现性。  相似文献   

19.
沈健 《冶金分析》2020,40(5):63-67
铌锰铁是炼钢过程中的一种重要原料,建立测定铌和锰的方法尤为重要。铌锰铁中铌和锰为主元素,含量高,运用化学湿法分析时主元素之间会相互干扰,影响测定的准确性。实验采用盐酸、硝酸、氢氟酸溶解样品,选择Nb 269.706nm为分析线、Mo 281.618nm为内标线;选择Mn 293.305nm为分析线、V 292.401nm为内标线,建立了采用电感耦合等离子体原子发射光谱法(ICP-AES)测定铌锰铁中铌和锰的方法。共存元素的干扰校正试验表明,样品中共存元素对待测元素无干扰。各待测元素的校准曲线线性相关系数均大于0.999 5。实验方法用于铌锰铁实际样品中铌和锰的测定,铌测定结果的相对标准偏差(RSD,n=11)为0.26%~0.28%;锰测定结果的相对标准偏差(RSD,n=11)为0.29%~0.33%。采用实验方法对铌锰铁实际样品中铌和锰进行测定,测得结果分别与日本标准JIS G 1328—1982中丹宁酸水解重量法测定铌和国标GB/T 5686.1—2008中高氯酸氧化滴定法测定锰的结果基本一致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号