首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 484 毫秒
1.
氟掺杂型锂锰氧化物的电化学性能研究   总被引:3,自引:0,他引:3  
以LiNO3、LiF和Mn(AC)2·4H2O为原料,采用柠檬酸配位法,通过控制n(Li)n(Mn)和掺氟量,在750℃下制备尖晶石型系列Li1+xMn2-xO4-yFy电极材料。Li1+xMn2-xO4-yFy的充放电实验表明,随着锂掺入量的增加,材料的首次放电容量迅速降低,但材料的循环稳定性明显提高。Li1.05Mn2O4的放电容量最高(116mAh g),而且稳定性也较好。室温下,5次循环后容量仅衰减1.92%。掺氟明显降低材料在高温条件下的容量损失,但随着氟掺杂量的增加,材料的首次放电容量降低较大。同时掺杂锂和氟的材料比仅掺杂锂的材料具有更好的循环稳定性,Li1.05Mn1.95O3.95F0.05循环稳定后,放电比容量保持在103.5mAh g。Li1.15Mn1.85O3.9F0.1循环4次以后,便没有容量衰减,放电比容量稳定在98.5mAh g,因此,从比容量和循环稳定性两方面考虑,Li1.05Mn1.95O3.95F0.05和Li1.15Mn1.85O3.9F0.1是较好的电极材料。  相似文献   

2.
以Mn3O4、Li2CO3、Co3O4、Al2O3和NiCO_3为原料,固相法合成Co、Al、Ni掺杂LiMn_2O_4。采用X-射线衍射、扫描电子显微镜、恒电流充放电和电化学阻抗等技术研究合成材料的结构、形貌及电化学性能。结果表明:Co、Al、Ni掺杂没有改变LiMn_2O_4的晶体结构,但晶格常数略有减小。掺杂后LiMn_2O_4晶粒规整,表面光滑,晶粒形貌差别不大。掺杂后LiMn_2O_4的比容量有所下降,循环性能得到改善,容量保持率是Li Co0.05Mn1.95O4Li Ni0.05Mn1.95O4Li Al0.05Mn1.95O4LiMn_2O_4。Li Co0.05Mn1.95O4的循环性能最好。掺杂后LiMn_2O_4锂离子扩散系数有所提升,其中Li Co0.05Mn1.95O4的锂离子扩散系最大。  相似文献   

3.
采用沉淀法合成一系列Li(Ni1/3Co1/3Mn1/3)O2-xFx正极材料(0≤x≤0.5);用X射线衍射仪和扫描电镜仪分析了合成产物的晶体结构及表面形貌;利用充放电仪测定产物的电化学性能,结果表明Li(Ni1/3Co1/3Mn1/3)O1.7F0.3的电化学性能最佳,首次充放电比容量分别达181.9、174.0 mA.h/g,材料的结构在循环过程中保持稳定,倍率性能变好,电化学阻抗明显降低。  相似文献   

4.
以Co3O4 为Co源、Li2 CO3 为Li源、非水介质为分散剂 ,采用改进高温固相反应法合成了锂离子蓄电池正极材料LiCoO2 ,并采用XRD和电化学性能评价考察了不同合成条件对材料的晶体结构和电化学性能的影响。结果表明 ,材料的合成温度、前驱物的纯度和处理方法对材料的结构、充放电容量和循环性能有较显著的影响 ,焙烧时间对材料的电化学性能影响相对较小。以优化的最佳合成条件制备正极材料 ,材料的充放电比容量均大于 15 0mAh/g ,效率在 96 .0~ 99.9%之间。循环 10 0次后 ,材料的充放电比容量仍大于 146mAh/g ,容量保持率大于 97.3 %。优于常规固相反应法所得结果 ,显示了较好的应用前景  相似文献   

5.
锂离子蓄电池正极材料LiCoO2的制备与电化学性能研究   总被引:5,自引:2,他引:3  
以Co3O4为Co源、Li2O2为Li源、非水介质为分散剂,采用改进高温固相反应法合成了锂离子蓄电池正极材料LiCoO2,并采用XRD和电化学性能评价考察了不同合成条件对材料的晶体结构和电化学性能的影响。结果表明,材料的合成温度、前驱物的纯度和处理方法对材料的结构,充放电容量和循环性能有较显著的影响,焙烧时间对材料的电化学性能影响相对较小,以优化的最佳合成条件制备正极材料,材料的充放电比容量均大小于150mAh/g,效率在96.0-99.9%之间,循环100次后,材料的充放电比容量仍大于146mAh/g,容量保持率大于97.3%,优于常规固相反应法所得结果,显示了较好的应用前景。  相似文献   

6.
采用固相反应法分别合成正极材料纯相LiMn2O4和LiPrxMn2-xO4(x=0.02、0.04、0.06、0.08、0.10)固溶体。采用扫描电镜(SEM)、X射线衍射(XRD)、恒电流充放电等手段,对合成样品的形貌、结构、电化学性能进行了测试。结果表明:当x=0.06时,固溶体LiPr0.06Mn1.94O4具有良好的尖晶石结构,晶体大小较均匀;固溶体LiPr0.06Mn1.94O4具有良好的高温(55 ℃)循环性能,实验电池在55 ℃、1 C充放电倍率下,循环50次后容量保持率为82.5%。  相似文献   

7.
刘水香  张海朗 《化学世界》2013,54(1):1-4,17
采用溶胶-凝胶法合成层状LiNi1/3Co1/3Mn1/3O1.95Y0.05(Y=O,F,Cl,Br)正极材料,在850℃空气氛围下煅烧20h得到晶型较好的正极材料。以XRD、SEM和充放电测试等手段对材料的晶体结构、表观形貌和电化学性能进行表征。XRD显示F-和Cl-掺杂材料具有高度有序的二维层状结构;充放电测试表明,掺杂F-和Cl-的材料放电比容量、循环性能和倍率性能均优于未掺杂材料,特别是掺杂F-材料在55℃,电压范围为2.0~4.6V,0.15mA电流下首次放电比容量高达207.5mAh/g,且0.9mA电流下第60次循环的容量仍达到165.1mAh/g。掺杂Br-的材料结构稳定性、循环性能和放电比容量均比未掺杂材料差。  相似文献   

8.
Mg2+、Zr4+离子掺杂对Li4Ti5O12电化学性能的影响   总被引:1,自引:0,他引:1  
以固相反应法合成了尖晶石型Li4Ti5O12电极材料,进行了金属离子掺杂以提高其导电性及综合性能,以适应用于大电流充放电的目的。采用XRD、室温恒流充放电循环、交流阻抗和循环伏安等测试手段,考察了A位掺杂Mg(Li4-xMgxTi5O12,x=0.15),B位掺杂Zr(Li4ZrxTi5-xO12,x=0.15)对Li4Ti5O12结构和电化学性能的影响。结果表明:掺杂少量的Mg2+、Zr4+未引起材料结构的变化,明显降低了Li4Ti5O12电荷转移阻抗,使导电性得到有效提高。0.1 C放电倍率下放电,未掺杂及掺杂Mg2+、Zr4+的Li4Ti5O12首次放电容量分别为159.8、144.9、161.2mAh/g,循环40次后,容量分别保持为113.8、130.6、133.6 mAh/g。与未掺杂的Li4Ti5O12相比,掺杂后的电极材料极化减小、循环容量及稳定性提高。  相似文献   

9.
利用共沉淀法制备了锂离子电池正极材料Li1.2Mn0.6Ni0.2O2和Li1.2Mn0.588Ni0.196Co0.016O2,并利用XRD、SEM和充放电测试对其晶体结构、形貌和电化学性能进行了表征.XRD结果表明:掺杂钴材料后,材料的层状结构保持完整,阳离子混排程度降低.电化学性能测试结果表明:掺钴材料的首次充放电效率和倍率放电性能明显优于Li1.2Mn0.6Ni0.2O2,且表现出较优的循环性能,其1、2、5C放电比容量分别为230.3、215.6、155.6 mA·h/g,1 C下循环50次的容量保持率为90.9%.  相似文献   

10.
采用溶胶-凝胶法合成了复合离子掺杂的尖晶石型锰酸锂Li1.02Mn1.92Al0.02Cr0.02Mg0.02O4-xFx(x=0,0.06)正极材料,并用XRD、CV、EIS和充放电测试等研究了其结构和电化学性能。结果表明,F与金属离子(Li、Al、Cr、Mg)的复合掺杂不仅提高了材料的比容量,还增加了尖晶石结构的稳定性,改善了材料的循环性能和可逆性能;充放电测试结果表明,Li1.02Mn1.92Al0.02Cr0.02Mg0.02O3.94F0.06具有优越的循环性能,常温下,以1/3C充放电的首次放电容量及50个循环后的容量保持率分别为117.9 mAh/g,96.9%。  相似文献   

11.
以醋酸锰、氢氧化锂为原料,以柠檬酸为络合剂,n(柠檬酸):n(锂)=1:1,采用柠檬酸辅助溶胶-凝胶法制备了富锂尖晶石Li1+xMn2O4 (x=0,0.02,0.05,0.07),采用TG-DTA、XRD、SEM分别对前驱体和目标材料进行了表征,采用恒流充放电及循环伏安(CV)测试对材料进行了电化学性能表征,考察了不...  相似文献   

12.
以Mg(CH3 COO)2·4H2O,CO(CH3 COO)2-4H2O作为Mg2+和CO2+的掺杂源,以乙醇为溶剂,C6H15 NO3作为络合剂,CH3,COOLi·2H2O和Ti(OC4 H9)4作为原料,利用溶胶-凝胶法制备复合掺杂2种金属的Li4-xMg-Ti5-yCoyO12材料,并对其进行了X射线衍射(XR...  相似文献   

13.
唐致远  余明远  薛建军  高飞 《化工进展》2007,26(3):396-399,404
采用溶胶凝胶法合成锂离子电池正极材料LiMn2O4、LiNi0.01Co0.01Mn1.98O4和LiNi0.01Co0.01Mn1.98O3.95F0.05。使用X射线衍射、扫描电子显微镜对合成材料的结构及物理性能进行了表征。将合成材料作为锂离子电池正极活性材料,用循环伏安、交流阻抗及充放电测试的电化学测试方法对材料进行了电化学的研究。结果表明,合成的LiNi0.01Co0.01Mn1.98O3.95F0.05材料的初始容量高于LiNi0.01Co0.01Mn1.98O4,而循环性能优于LiNi0.01Co0.01Mn1.98O4和LiMn2O4,显示了阴阳离子复合掺杂对于阳离子单一掺杂的优势。  相似文献   

14.
以钛酸四丁酯、醋酸锂、柠檬酸和竹炭为原料,采用两步煅烧和溶胶-凝胶法制备锂离子电池Li4Ti5O12/C负极材料。采用XRD、SEM表征材料的微观结构和形貌。采用恒流充放电、交流阻抗和循环伏安法研究材料的电化学性能。结果显示,Li4Ti5O12/C具有良好的结晶度,颗粒表面光滑,分散均匀,粒径为200~300 nm。10 C倍率下,Li4Ti5O12/C的首次放电比容量为180.4 mA•h/g,循环300圈后为167.5 mA•h/g,容量保持率为92.8%,远高于Li4Ti5O12的46.9%。在20 C大倍率下,Li4Ti5O12/C和Li4Ti5O12的容量保持率分别为68.9%和41.3%  相似文献   

15.
采用微波共沉淀法合成了制备LiNi0.8Co0.2O2的前驱体球形α-Ni0.8Co0.2(OH)2,将其与LiOH·H2O混合,在氧气氛围下,用不同的烧结温度分别烧结10小时获得LiNi0.8Co0.2O2正极材料。用XRD、SEM对所制备的正极材料进行结构和形貌分析,用恒流充放电测试材料的电化学性能。结果表明,烧结温度对材料结构和电化学性能影响较大,所合成材料均具有α-NaFeO2的层状结构,烧结温度越高材料结晶越完善。900℃烧结的LiNi0.8Co0.2O2材料初级颗粒结晶最完善而且其二次团聚粒子的平均粒径最小,其表现出的电化学性能也最好,首次放电容量为189.1mA·h·g-1,首次循环放电效率达到92.5%。30循环后放电容量保持在148 mA·h·g-1,显示出较好的循环稳定性。  相似文献   

16.
The layered Li[Li0.07Ni0.1Co0.6Mn0.23]O2 materials were synthesized by sol-gel method with glycine or citric acid as chelating agent. The prepared materials were characterized by means of XRD, SEM and Raman spectroscopy. Li/Li[Li0.07Ni0.1Co0.6Mn0.23]O2 cells were assembled and subjected to charge-discharge studies at different C rates, viz 0.2, 1, 2 and 4 C. Although the samples showed less discharge capacity at 4 C rate the fade in capacity per cycle is lesser than that of capacity fade at 0.2 C rate. The citric acid assisted sample is found to be superior in terms of discharge capacity, capacity retention rate and also in thermal stability to that of sample prepared with glycine as chelating agent.  相似文献   

17.
Layered Li[Ni(1−x)/3Mn(1−x)/3Co(1−x)/3Crx]O2 materials with x = 0, 0.01, 0.02, 0.03, 0.05 are prepared by a solid-state pyrolysis method. The oxide compounds were calcined with various Cr-doped contents, which result in greater difference in morphological (shape, particle size and specific surface area) and the electrochemical (first charge profile, reversible capacity and rate capability) differences. The Li[Ni(1−x)/3Mn(1−x)/3Co(1−x)/3Crx]O2 powders were characterized by means of X-ray diffraction (XRD), charge/discharge cycling, cyclic voltammetry, and SEM. XRD experiment revealed that the Li[Ni(1−x)/3Mn(1−x)/3Co(1−x)/3Crx]O2 (x = 0, 0.01, 0.02, 0.03, 0.05) were crystallized to well layered -NaFeO2 structure. The first specific discharge capacity and coulombic efficiency of the electrode of Cr-doped materials were higher than that of pristine material. When x = 0.02, the sample showed the highest first discharge capacity of 241.9 mAh g−1 at a current density of 30 mA g−1 in the voltage range 2.3–4.6 V, and the Cr-doped samples exhibited higher discharge capacity and better cycleability under medium and high current densities at room temperature.  相似文献   

18.
The Ni-ultrahigh cathode material is one of the best choices for further increasing energy-density of lithium-ion batteries (LIBs),but they generally suffer from the poor structure stability and rapid capacity fade.Herein,the tungsten and phosphate polyanion co-doped LiNi0.9Co0.1O2cathode materials are suc-cessfully fabricated in terms of Li(Ni0.9Co0.1)1-xWxO2-4y(PO4)y by the precursor modification and subse-quent annealing.The higher bonding energy of W-O (672 kJ·mol-1) can extremely stabilize the lattice oxygen of Ni-rich oxides compared with Ni-O (391.6 kJ·mol-1) and Co-O (368 kJ·mol-1).Meanwhile,the stronger bonding of Ni-(PO43-) vs.Ni-O could fix Ni cations in the transition metal layer,and hence suppressing the Li/Ni disorder during the charge/discharge process.Therefore,the optimized Li(Ni0.9Co0.1)0.99W0.01O1.96(PO4)0.01 delivers a remarkably extended cycling life with 95.1% retention of its initial capacity of 207.4 mA·h·g-1 at 0.2 C after 200 cycles.Meantime,the heteroatoms doping does not sacrifice the specific capacity even at different rates.  相似文献   

19.
锂离子电池正极材料技术进展   总被引:2,自引:0,他引:2  
概述了国内外近30 a有关锂离子电池正极材料的研究进展以及笔者在锰系正极材料方面的研究结果; 比较了几种主要正极材料的性能优缺点;阐明了正极材料发展方向。近期镍钴锰酸锂三元材料将逐步取代钴酸锂,而改性锰酸锂和镍钴锰酸锂三元材料以及两者的混合体将在动力型锂离子电池中获得广泛使用。在未来5~10 a,高容量的层状富锂高锰型正极材料或许会是下一代锂离子电池正极材料的有力竞争者。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号