首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
研究了玉米秸秆磷酸活化法制备吸附剂的工艺条件,采用正交试验探讨了料液比、磷酸浓度、硫酸浓度、活化时间、活化温度等因素对吸附剂碘吸附值和产率的影响,得到试验室条件下的最佳工艺条件,即料液比1∶3.0,磷酸浓度40%,硫酸浓度9%,活化时间45min,活化温度350℃。该条件下,制备的吸附剂碘吸附值优于市售的商业活性炭样品。用SEM和XRD表征了玉米秸秆活化前后微观结构的变化;氮气吸附仪对比表面积和孔径进行了分析,结果表明,自制吸附剂具有较规整的中孔和大孔结构,比表面积高于市售活性炭。  相似文献   

2.
采用热重分析仪(TG-DTG)分析了NH4H2PO4活化甘蔗叶时的热解历程和活化反应机理,研究了活化剂浓度、液料比、浸泡时间、活化温度及活化时间等工艺因素对甘蔗叶活性炭样品得率、碘吸附值的影响,并运用扫描电子显微镜(SEM)对甘蔗叶及其活性炭样品进行了表征。结果表明,甘蔗叶制备活性炭的反应为4C+2NH4H2PO4→P2O3+CH4↑+CO2↑+2CO↑+2NH3↑+H2O↑甘蔗叶活性炭的碘吸附值随着活化时间的延长而增加,随着活化剂浓度、液料比、浸泡时间、活化温度的增加而呈现先增后减的变化规律;甘蔗叶活性炭的最优制备工艺条件为活化剂浓度2.5%(质量分数),液料比为5∶1,浸泡时间为20 h,活化温度为700℃,活化时间为60 min,所制备的活性炭样品具有丰富的管束结构,其得率和碘吸附值分别为30.9%、993.33 mg/g。  相似文献   

3.
利用哈尔滨市某污水处理厂的剩余污泥为原料,采用化学活化法制备出一系列污泥炭吸附剂,并利用稀土元素铈对其改性,将其应用于H_2S臭气的脱除。利用比表面和孔结构分析仪、扫描电镜、FT-IR和XPS等对该吸附剂进行表征,用吸附装置对硫化氢进行吸附效能试验。结果表明,利用铈无论是掺杂改性,还是负载改性所制备的污泥活性炭吸附剂的脱臭性能都大大提高;改性后的污泥炭吸附剂仍为中孔,但孔径变小,不过表面活性官能团大大增加,使其与硫化氢的物化吸附以及化学和催化反应增强,从而使铈改性后的污泥炭吸附剂更有利于H_2S的脱除。  相似文献   

4.
采用生物质材料制备比表面积大、微孔结构发达的活性炭,对于缓解资源紧缺、拓展活性炭在气相吸附和双电层电容器等方面的应用具有重大意义。以汉麻秆为原料、KOH为活化剂制备活性炭,通过正交试验探讨碱炭比、活化温度、活化时间对活性炭得率和碘吸附值的影响;采用场电镜、孔径分析仪对样品的微孔结构进行分析。结果表明,影响活性炭得率和碘吸附值的最显著因素分别为碱炭比和活化温度,在碱炭比4∶1、活化温度900℃、活化时间为0.5h的条件下,活性炭得率为72%、碘吸附值为2 047mg/g,比表面积为1 924.08m2/g,总孔容为1.01cm3/g,平均孔径为2.1nm;该活性炭的微孔结构发达(微孔率为81.19%),孔径分布较窄,同时存在超微孔和极微孔,且极微孔含量很高。  相似文献   

5.
混合活化制备稻壳基活性炭研究   总被引:3,自引:0,他引:3  
陈俊英  冯向应  史召霞 《功能材料》2012,43(23):3278-3281
以脱硅稻壳灰为原料,采用混合活化法制取活性炭,通过4种单一活化剂物料比的实验,确定了最佳物料比为1∶3;设计了5种混合活化的配比方案,实验结果表明在NaOH&Na2CO3和KOH&K2CO3配比为2.5∶0.5时碘吸附值和亚甲基蓝吸附值分别达到最优,说明辅助活化剂的加入可有效提高稻壳基活性炭的吸附性能。在总物料比和活化剂混合配比确定的条件下,进行了浸渍液质量分数、活化温度、活化时间3个单因素实验,结果显示,浸渍液质量分数为30%、活化温度为500℃、活化时间为40min时活化效果最佳,其中碘吸附值最高可达1528.76mg/g,可知混合活化对制备稻壳基活性炭有显著作用。  相似文献   

6.
以新疆克拉玛依石油焦为原料,KOH为活化剂,在N2保护下,采用化学活化法制备高比表面积活性炭。系统考察了碱焦比、活化温度、活化时间以及N2流速对所制备活性炭的碘吸附值及产率的影响。结果表明:当碱焦比为4∶1、活化温度为800℃、活化时间为0.5h及N2流速为50mL/min时,制备出的活性炭BET比表面积高达2806.69m2/g,碘吸附值为2941mg/g,活化产率为62.1%。采用N2吸附-脱附及X射线衍射等实验手段对活性炭进行了表征。  相似文献   

7.
煤基成型活性炭活化实验研究及性能表征   总被引:1,自引:1,他引:0  
以低变质粉煤与液化残渣为原料,水蒸气为活化剂,研究了活化时间与活化温度对成型活性炭吸附性能、抗压强度和活性炭收率的影响。采用N2吸附、SEM、碘吸附等手段对成型活性炭的孔径分布及吸附性能进行了分析表征。研究表明,经700℃炭化1.0h,800℃水蒸气活化1.5h制备的成型活性炭碘吸附值为820mg/g,活性炭收率为36.63%,抗压强度为0.08MPa,比表面积为509m2/g,其总孔容积达0.35cm3/g。随着活化时间的延长,成型活性炭的碘吸附值先增大后减小,炭化收率和抗压强度都逐渐降低;随着活化温度的升高,成型活性炭的碘吸附值先增大后减小,炭化收率和抗压强度都逐渐减小。  相似文献   

8.
刘皓  邓保炜  陈娟  白晓惠  张楠 《材料导报》2016,30(10):87-90
以兰炭粉为原料,水蒸汽为活化剂,采用物理活化法制备中孔活性炭。分别讨论了活化温度、活化时间、水蒸汽质量流量对活性炭碘吸附值的影响,并采用正交实验对工艺条件进行了优化。利用全自动物理吸附仪对活性炭的比表面积和孔结构进行表征。结果表明:随着活化温度的升高、活化时间的延长和水蒸汽流量的增大,活性炭的碘吸附值均呈现先升高后下降的变化规律。正交实验结果表明,水蒸汽活化兰炭粉的适宜条件为:活化温度900℃,活化时间60min,水蒸汽流量1.25g/min。此条件下制得的活性炭具有多级孔的特征,而且以中孔为主,其碘吸附值为924.45mg/g,比表面积为818.52m2/g。  相似文献   

9.
木质素基活性炭的制备和吸附特性   总被引:1,自引:0,他引:1  
用磷酸活化法制备木质素基活性炭,研究了浸渍比、磷酸浓度、活化温度、活化时间对其吸附性能和得率的影响。结果表明,随着浸渍比、磷酸浓度、活化温度、活化时间的增加,活性炭的碘吸附值和亚甲基蓝吸附值均先升后降。适当提高这4个数值有助于木质素形成较多的微孔,提高活性炭的吸附性能;但超过一定程度时,活性炭内部的部分微孔之间的孔壁变薄甚至被烧穿,造成微孔扩大至中孔甚至大孔。同时,磷酸与已生成的微孔结构的孔壁碳原子发生反应,引起炭材料过度烧蚀,使孔径变大,导致活性炭的吸附性能降低。这种活性炭对苯酚的吸附符合Freundlich等温吸附方程,吸附动力学符合Lagergren拟二级速率方程。  相似文献   

10.
以KNO_3为氧化剂,经5%~15%(质量分数)KOH常温浸渍,在N_2-水蒸气混合气氛下进行控制热分解制备均匀超微孔活性炭。试验选用正交试验法,选择活化温度、活化时间、KOH浸渍浓度、浸渍时间等参数为影响因素,以碘吸附值为考察指标,得到最佳水平组合,活化温度900℃,活化时间1h,KOH浓度15%,浸渍时间24h。对活性炭表征结果如下:最佳样品碘吸附值达840 mg/g。BET比表面积为725cm~2/g,中值孔径为0.489nm,其中微孔容积占总孔容的70.8%,氢气最大吸附量达76.85cm3/g。该样品以超微孔为主,超微孔孔径主要分布在0.45~0.52nm之间,孔分布比较集中,可用于混合气体分离。  相似文献   

11.
The carbon-bearing adsorbents were prepared from biochemical and surplus sludges by physical activation and chemical activation. The results indicated that the adsorbents made by way of chemical activation were better, with the optimum activator being complex of ZnCl(2) and H(2)SO(4). Moreover, the optimum preparation conditions were concentration of two activators 5 mol/L (the ratio of ZnCl(2) and H(2)SO(4) was 2:1), at the activating temperature of 550 degrees C, in the proportion of solid to liquid 1:2.5, in a period of 2h. Contrasting the active carbon, the carbon-bearing adsorbents were characterized by X-ray diffraction (XRD), energy dispersive X-ray spectrometer (EDS), scanning electron microscope (SEM), BET and BJH. By application of those adsorbents to treatment of wastewater of urban, the treatment effect of the carbon-bearing adsorbents were better than the active carbon. On the condition that the concentration was 0.5%, the COD, P and chromaticity color removal rates of carbon-bearing adsorbent made from the biochemical sludge of sewage were higher, which were 79.1, 98.3 and 87.5%, respectively, and the dynamic adsorption capacity was 47.8 mg/g.  相似文献   

12.
In this study, pure TiO2-nanoparticles and TiO2/sewage sludge (TS) as biomass material were synthesised via a sol–gel method. The adsorption potential of nanosized TiO2 and TS for removal of Cd(II) was investigated in a batch system. The prepared adsorbents were characterised using X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). The XRD analysis showed that pure TiO2 is in amorphous phase before calcination and in anatase phase at annealing temperature of 400 °C. TiO2/sewage sludge that calcined at 400 °C (TS400) was found to be the best adsorbent for cadmium removal from aqueous solution. Kinetic and isotherm studies were carried out by considering the parameters, pH, initial concentration and contact time. The optimum pH value for Cd(II) adsorption onto TS400 was found to be 6. Langmuir isotherm showed better fit than Freundlich isotherm and the maximum adsorption capacity was found to be 29.28 mg/g which is higher than that of many other adsorbents reported in literature. The sorption kinetic data were well fitted with a pseudo-second-order model. These results demonstrated that TS400 was readily prepared and is the promising and effective solid material for the removal of Cd(II) from aqueous solutions.  相似文献   

13.
This work elucidates the removal of copper from industrial sludge by traditional and microwave acid extraction. The effects of acid concentration, extraction time, sludge particle size and solid/liquid (S/L) ratio on copper removal efficiency were evaluated. Leaching with more concentrated acid yielded greater copper content from the industrial sludge. The experimental findings reveal that the most economical traditional extraction conditions were the use of 1N sulfuric or nitric acid for 60 min at an S/L ratio of 1/20; however, at an S/L ratio of 1/6, the extraction time needed to achieve the same copper removal efficiency was increased to 36 h. Increasing the microwave power and reducing the S/L ratio increased the copper extraction efficiency and the effect in the larger S/L ratio system was more significant. A comparison of the results of microwave-assisted (microwave only) and microwave-enhanced (microwave with addition of active carbon) acid extraction demonstrated that under both conditions, S/L ratio = 1/6 and 1/20; adding active carbon shortened the extraction time required to achieve 80% copper extraction efficiency from 20 to 10 min. These experimental results indicate that the most important factors that most strongly affected microwave acid extraction were the addition of a microwave absorber, the microwave power input and the S/L ratio. The sludge particle size did not significantly affect the copper extraction. The results reveal that sulfuric acid was an effective extractant and that the copper fraction in the extracted sludge shifted from being mostly bound to the Fe–Mn oxides and organic matter, to being mostly bound to organic matter and remaining as a residue during acid extraction.  相似文献   

14.
Electrodialytic removal of cadmium from wastewater sludge   总被引:9,自引:0,他引:9  
This paper presents for the first time laboratory results demonstrating electrodialytic removal of Cd from wastewater sludge, which is a method originally developed for soil remediation. During the remediation a stirred suspension of wastewater sludge was exposed to an electric dc field. The liquid/solid (ml/g fresh sludge) ratio was between 1.4 and 2. Three experiments were performed where the sludge was suspended in distilled water, citric acid or HNO3. The experimental conditions were otherwise identical. The Cd removal in the three experiments was 69, 70 and 67%, respectively, thus the removal was approximately the same. Chemical extraction experiments with acidic solutions showed that 5-10 times more Cd could be extracted from decomposed sludge than from fresh sludge. It is likely that the mobilization of Cd during decomposition of the sludge contributes to the efficient removal of Cd by the electrodialytic method. Extraction experiments and electrodialytic remediation using distilled water as enhancement agent showed that 0.3% Cd could be extracted from decomposed sludge during 1 week in closed flasks, whereas 69% was removed during 2 weeks of electrodialytic remediation in a stirred solution in contact with atmospheric air. A combination of aerobic decomposition and electrodialytic treatment could be a promising method for Cd removal from wastewater sludge, and thus Cd could be removed without the addition of chemicals to the sludge.  相似文献   

15.
A high amount of zinc disposed in the landfill sites as a mixed-metal plating sludge represents a valuable zinc source. To recover zinc from the plating sludge, a sulfidation treatment is proposed in this study, while it is assumed that ZnS formed could be separated by flotation. The sulfidation treatment was conducted by contacting simulated zinc plating sludge with Na(2)S solution at S(2-) to Zn(2+) molar ratio of 1.5 for a period of 1-48 h, while changing the solid to liquid (S:L) ratio from 0.25:50 to 1.00:50. The conversion of zinc compounds to ZnS was determined based on the consumption of sulfide ions. The reaction products formed by the sulfidation of zinc were identified by X-ray diffraction (XRD). As a result, it was found that the conversion of zinc compounds to ZnS increased with an increase in S:L ratio. A maximum conversion of 0.809 was obtained at an S:L ratio of 1.00:50 after 48 h. However, when the zinc sludge treated at S:L ratio of 1.00:50 for 48 h was subjected to XRD analyses, only ZnS was identified in the treated zinc sludge. The result suggested that the rest of zinc sludge remained unreacted inside the agglomerates of ZnS. The formation behavior of ZnS was predicted by Elovich equation, which was found to describe the system satisfactorily indicating the heterogeneous nature of the sludge.  相似文献   

16.
The present study is concerned with the sulfidation treatment of copper-containing plating sludge towards copper resource recovery by flotation of copper sulfide from treated sludge. The sulfidation treatment was carried out by contacting simulated or real copper plating sludge with Na(2)S solution for a period of 5 min to 24 h. The initial molar ratio of S(2-) to Cu(2+) (S(2-) to Me(2+) in the case of real sludge) was adjusted to 1.00, 1.25 or 1.50, while the solid to liquid ratio was set at 1:50. As a result, it was found that copper compounds were converted to various copper sulfides within the first 5 min. In the case of simulated copper sludge, CuS was identified as the main sulfidation product at the molar ratio of S(2-) to Cu(2+) of 1.00, while Cu(7)S(4) (Roxbyite) was mainly found at the molar ratios of S(2-) to Cu(2+) of 1.50 and 1.25. Based on the measurements of oxidation-reduction potential, the formation of either CuS or Cu(7)S(4) at different S(2-) to Cu(2+) molar ratios was attributed to the changes in the oxidation-reduction potential. By contrast, in the case of sulfidation treatment of real copper sludge, CuS was predominantly formed, irrespective of S(2-) to Me(2+) molar ratio.  相似文献   

17.
Sorption and degradation of bisphenol A by aerobic activated sludge   总被引:2,自引:0,他引:2  
Laboratory-scale batch experiments were conducted to investigate the sorption and degradation of bisphenol A (BPA) at μg/L range in an aerobic activated sludge system. The sorption isotherms and thermodynamics indicated that the sorption of BPA on sludge was mainly a physical process in which partitioning played a dominating role. The values of sorption coefficient Koc were between 621 and 736 L/kg in the temperature range of 10–30 °C. Both mixed liquor suspended solid (MLSS) and temperature influenced BPA sorption on sludge. The degradation of BPA by acclimated activated sludge could be described by first-order reaction equation with the first-order degradation rate constant of 0.80 h−1 at 20 °C. The decrease of initial COD concentration and the increase of MLSS concentration and temperature enhanced BPA degradation rate. The removal of BPA in the activated sludge system was characterized by a quick sorption on the activated sludge and subsequent biodegradation.  相似文献   

18.
This is a study about making use of two residual materials such as sludges from a sewage treatment plant and discarded tyres to generate activated carbons and later optimize the production process. H2SO4 and ZnCl2 were used as chemical activating agents. Liquid-phase adsorption tests were made using the produced carbons to retain methylene blue and iodine. The best precursor was sludge activated with ZnCl2. After optimization studies, the best production methodology involved a 1:1 ratio of sludge and ZnCl2, a heating rate of 5 degrees C/min up to 650 degrees C and a residence time of 5 min. The resulting materials adsorbed up to 139.4 mg/g of methylene blue and 1358.5 mg/g of iodine. Nevertheless these carbons may leach Zn while using. To avoid this two treatments were carried out: one consisting of a coating with a polymer and another involving an intensive washing, which was seen to be more efficient.  相似文献   

19.
In the present work, the abilities of sewage sludge and pomace ashes to remove copper (Cu(2+)) ions from aqueous solutions are compared. Batch adsorption experiments were performed in order to evaluate the removal efficiency of these materials. Effect of contact time, solution pH, ash concentration and temperature on the removal of Cu(2+) was investigated. The results of batch equilibrium studies showed that the solution pH was the key factor affecting the adsorption characteristics. In general, the amount of Cu removed increased as the solid concentration and pH increased, and then it remained constant over a wide pH region. The adsorption test of applying sewage sludge and pomace ashes into synthetic wastewater revealed that the adsorption data of these materials for copper ions were better fitted to the Langmuir isotherm since the correlation coefficients for the Langmuir isotherm were higher than that for the Freundlich isotherm. The estimated maximum capacities of copper adsorbed by sewage sludge and pomace ashes were 5.71 and 6.98 mg g(-1), respectively. Experimental results indicated that the adsorption was favorable at higher pH and higher temperature. Values of DeltaG degrees ranging from -4.64 to -5.13 kcal mol(-1) for sewage sludge ash and from -4.97 to -5.53 kcal mol(-1) for pomace ash suggest that the adsorption reaction is a physical process enhanced by the electrostatic effect. The values of DeltaH degrees and DeltaS degrees are, respectively, 4.27 kcal mol(-1) and 30.6 cal K(-1)mol(-1) for sewage sludge ash and 4.33 kcal mol(-1) and 31.3 cal K(-1)mol(-1) for pomace ash. The mechanisms of copper removal by these materials included adsorption and precipitation. The sewage sludge and pomace ashes are shown to be effective adsorbents for this metal.  相似文献   

20.
During the steel production in the basic oxygen furnace (BOF), approximately 7-15 kg of dust per tonne of produced steel is generated. This dust contains approximately 1.4-3.2% Zn and 54-70% Fe. Regarding the zinc content, the BOF dust is considered to be highly problematic, and therefore new technological processes for recycling dusts and sludge from metallurgical production are still searched for. In this study the hydrometallurgical processing of BOF sludge in the sulphuric acid solutions under atmospheric pressure and temperatures up to 100 °C is investigated on laboratory scale. The influence of sulphuric acid concentration, temperature, time and liquid to solid ratio (L:S) on the leaching process was studied. The main aim of this study was to determine optimal conditions when the maximum amount of zinc passes into the solution whilst iron remains in a solid residue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号