首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 211 毫秒
1.
权国政  赵磊  张艳伟  周杰  李蓬川 《功能材料》2012,(2):222-226,230
热压缩实验获得Ti-6Al-2Zr-1Mo-1V合金在温度1073~1323K,应变速率0.01~10s-1条件下的真应力-应变曲线,以此作为识别及表征动态再结晶临界条件的底层数据。对比分析流变应力曲线发现高温、低应变速率下动态回复型软化态势显著;低温、高应变速率下动态再结晶型软化态势显著。引入材料加工硬化率θ,结合θ-σ曲线拐点判据识别了流变应力曲线隐含表征激活动态再结晶的特征参量:临界应变、临界应力。采用含动态再结晶激活能Q的Arrhenius方程求得α、β、n1、n2等材料常数并获得该合金动态再结晶激活能对应变速率及温度的响应图。进一步引入表征动态再结晶临界条件的临界应变模型,获得了临界应变与各热力参数之间的数学关系,验证表明该临界模型预测精度最大为12.9%。  相似文献   

2.
通过严格控制合金熔炼过程原料中杂质元素含量并添加TiO_2来熔炼出实验所需不同氧元素含量的Ti-6Al-3Nb-2Zr-1Mo钛合金铸锭。在Gleeble-3800热模拟试验机上对不同氧含量的钛合金铸锭进行热压缩实验,获得不同温度和变形速率下热压缩变形的应力-应变曲线。通过分析热变形应力应变曲线、计算本征常数,获得氧含量(质量分数)为0. 04%、0. 14%的Ti-6Al-3Nb-2Zr-1Mo钛合金的热变形本构方程。观察金相组织后发现,提高氧元素含量会显著提高合金热变形激活能,抑制合金塑性变形;但适当的氧含量又可以促进合金发生动态再结晶,使得发生动态再结晶所需要的温度降低,发生再结晶的变形速率也有所提高。促进钛合金动态再结晶形核同时,拓宽钛合金热变形过程的加工温度、变形速率的范围;但过量的氧含量也会造成合金热变形过程中流变失稳导致加工区域变小。因此在工业生产过程中需要根据具体的热加工工艺,将合金中杂质元素氧的含量控制在一个合理的范围之内,从而取得更加优异的综合性能。  相似文献   

3.
本文给出了Ti-6Al-4V合金的应力应变曲线,分析了应变速率和应变温度对流动应力的影响,并建立了Ti-6Al-4V合金的高温变形本构模型,为提高该合金加工质量提供理论依据。  相似文献   

4.
利用Gleeble-3500热模拟试验机进行等温恒应变热压缩实验,以实验获得的数据为基础,研究Ti-22Al-24Nb-0.5Y合金流变行为,通过正交实验对影响合金的流变应力因素进行分析,并建立基于BP神经网络的合金高温本构关系模型。结果表明:影响合金流变应力的主要因素依次为应变速率、变形温度和应变量;Ti-22Al-24Nb-0.5Y合金在热变形时的流变应力对应变速率和变形温度都较为敏感。当变形温度较低,应变速率较高时,合金变形呈流变软化特征,当变形温度较高,应变速率较低时,合金变形趋向于稳态流动;利用BP神经网络建立的合金高温本构关系模型,具有较高的精度,其相关性系数达到0.9949,平均相对误差在3.23%,预测值偏差在10%以内的数据点达98.79%,该预测模型可作为Ti2AlNb基合金塑性成形过程有限元模拟的本构关系。  相似文献   

5.
采用恒应变速率热压缩模拟实验,对Ti-5Mo-5V-1Cr-3A1(简称1Cr)钛合金在应变速率0.001~1s-1、变形温度700~900℃条件下进行研究.结果表明:该材料的流变应力对温度与应变速率敏感:当变形温度为700~800℃时,真应力-真应变曲线呈现动态再结晶单曲线特征;当变形温度为800~900℃时,低应变速率(0.001s-1)的真应力-真应变曲线呈现动态再结晶多应力峰值曲线特征,高应变速率(0.01~1s-1)的真应力-真应变曲线呈现动态回复曲线特征.1Cr合金在等温压缩变形时的流变行为可用包含Zener-Holomon参数的Arrhenius本构方程描述,变形激活能为456kJ/mol.金相结果显示,材料在热压缩过程中的动态行为除了与变形速率、变形温度等加工参数相关外,也与相应温度、变形速率下材料的组织及相结构有关.合金在低应变速率0.001s 1下热压缩变形时,在接近相变点或以上(800~900℃)温度范围内仍呈现动态再结晶行为,这与材料在此阶段发生的应变诱发马氏体转变密切相关,马氏体相的析出促使材料在热变形时趋向于发生动态再结晶行为.  相似文献   

6.
目的 建立近β钛合金Ti−6Mo−5V−3Al−2Fe−2Zr(质量分数)的热变形本构方程,绘制热加工图,确定该合金的流变失稳区和适宜加工区,为其在工业生产中热加工工艺参数的制定提供指导。方法 在变形温度700~ 850 ℃、应变速率0.000 5~0.5 s−1、真应变0.7的条件下,对近β钛合金Ti−6Mo−5V−3Al−2Fe−2Zr进行热压缩实验;基于Arrhenius方程建立该合金的热变形本构方程,并对方程进行验证;根据Prasad失稳准则,构建该合金的热加工图。结果 该合金的流变应力随着变形温度的升高而减小,随着应变速率的增大而增大;其热变形激活能为226.29 kJ/mol,本构方程为;通过热变形本构方程得到的峰值应力计算值与实验值平均误差为4.21%。结论 建立的热变形本构方程预测了流变应力,描述了该合金的热变形行为;通过叠加合金的能量耗散图和流变失稳图,获得了该合金的热加工图。基于热加工图确定该合金的流变失稳区为变形温度700~755 ℃与784~850 ℃、应变速率0.5~0.05 s−1,最佳加工区为变形温度836~850 ℃、应变速率0.000 5~0.005 s−1。  相似文献   

7.
通过在Gleeble-1500D热模拟试验机上进行高温等温压缩试验,对Cu-0.4Cr-0.15Zr-0.04Y合金在应变速率为0.001~10s-1、变形温度为650~850℃、最大变形程度为50%条件下的流变应力行为进行了研究。分析了该合金在高温变形时的流变应力和应变速率及变形温度之间的关系,并研究了在热压缩过程中组织的变化。结果表明,热模拟试验中,应变速率和变形温度的变化强烈地影响合金流变应力的大小,流变应力随变形温度升高而下降,随应变速率提高而增大。从应变速率、流变应力和温度的相关性,得出了该合金高温热压缩变形时的应力指数(n)、应力参数(α)、结构因子(A)、热变形激活能(Q)和流变应力方程,变形温度对合金动态再结晶行为有强烈影响。  相似文献   

8.
BFe10-1-1合金管是制造冷凝器的关键材料,主要采用热挤压方法成形.为了制定该合金的热挤压工艺,并为其挤压成形的数值模拟分析提供热力学参数,在Gleeble-1500动态热模拟机上进行高温等温压缩试验,研究了BFe10-1-1合金在高温塑性变形过程中的流变应力行为.试验温度为800~950℃,应变速率为0.1~20 S-1.研究结果表明,BFe10-1-1合金的流变应力随变形温度的增加而减小,随应变速率的增大而增大;随着应变速率越大,动态再结晶软化现象更为明显;获得了采用Zener-Hollomon参数来描述的BFe10-1-1合金高温变形的峰值应力方程,计算获得该合金变形激活能Q为182.68 kJ/mol.  相似文献   

9.
在Gleeble-1500热模拟仪上进行热压缩实验,研究了变形温度为350~500℃,应变速率为0.001,0.01,0.1和1s-1时Al-3%Cu-2%Li合金的热变形行为。利用双曲正弦本构关系分析热变形中的流变应力,采用金相分析热变形中合金的显微组织变化。结果表明,该合金流变应力的大小受变形温度、应变速率的强烈影响,它随变形温度升高而降低,随应变速率提高而增大,该合金高温流变应力可采用Zener-Hollomon参数的函数来描述,其热变形激活能为325.48kJ/mol。  相似文献   

10.
Mg-10Gd-3Y-0.6Zr-1Ag镁合金热压缩变形行为研究   总被引:1,自引:1,他引:0  
为了考察Mg-10Gd-3Y-0.6Zr-1Ag镁合金在不同条件下的变形行为,采用Gleeble2000热模拟机对该合金进行研究,分析了该合金在变形温度350~500℃,应变速率0.001~1 s-1条件下流变应力的变化规律.研究结果表明:变形温度和应变速率对流变应力有显著的影响,流变应力随变形温度的升高和应变速率的降低而降低;在应变速率相同的情况下,合金在较高温度下变形时,流变应力随应变量的增加达到峰值后,基本呈稳态流变特征;采用双曲正弦模型计算出该合金的变形激活能和应力指数,建立了该合金相应的热变形本构关系.  相似文献   

11.
常若寒  蔡中义  程丽任  车朝杰  迟佳轩 《材料导报》2017,31(6):136-139, 146
利用Gleeble-1500D试验机对新型Mg-Sm-Zn-Zr合金进行等温压缩实验,得到了该合金在350~450℃、0.001~1s-1条件下的真应力-应变曲线,应用遗传算法优化的BP神经网络建立起合金的应力预测模型,并对所建预测模型和考虑应变的Arrhenius本构模型进行了对比,采用预测数据并应用Murthy失稳准则绘制出该合金的热加工图,最后结合微观组织分析所绘制热加工图的合理性。结果表明,GA-BP模型预测值和实验值间的相关性系数为0.999,平均相对误差为1.469%,较应变补偿本构模型预测精度更高;热加工图设计合理,有效确认温度400~450℃、应变速率0.001~0.03s-1是最佳热加工范围,合金在该区域发生了动态再结晶。  相似文献   

12.
采用Gleeble-3800型热模拟试验机,对Zirlo合金进行等温恒应变速率压缩实验,研究其在变形温度550~700℃,应变速率0.01~10 s^(-1)范围内的热变形行为;并在Arrhenius型双曲正弦函数方程基础上引入应变量,构建了基于应变补偿的Arrhenius本构模型,同时构建了基于位错密度演化加工硬化模型和基于唯象型的软化模型的分段唯象型本构模型。结果表明:Zirlo合金的流变应力随着温度的降低和应变速率的提高而升高,低应变速率下流变应力呈现更高的温度敏感性,流变应力曲线在不同变形条件下分别呈现加工硬化、动态回复、动态再结晶特征。经过误差分析可知,基于应变补偿的Arrhenius本构模型大部分预测值的误差均在15%以内,具有较高的准确性,而分段唯象型本构模型相对平均绝对误差最大值不超过3%,具有97%以上的准确率,可以很好地预测合金的应力-应变曲线,具有良好的拓展性,并且可初步判断曲线类型,具有良好的实用性。  相似文献   

13.
使用Gleeble-3800热模拟试验机对TA5钛合金进行等温恒应变速率压缩,研究其在变形温度为850~1050℃、应变速率为0.001~10 s-1和最大变形量为60%条件下的高温热变形行为;建立了引入物理参量的应变补偿本构模型,并根据DMM模型得到了加工图。结果表明:TA5钛合金为正应变速率敏感性和负变形温度相关性材料;考虑物理参量的应变补偿本构模型具有较高的预测精度,其相关系数R为0.99,平均相对误差AARE为8.95%。分析加工图和观察微观组织,发现失稳区域(850~990℃,0.05~10 s-1)的主要变形机制为局部流动;稳定区域(870~990℃,0.005~0.05 s-1)的主要变形机制为动态回复和动态再结晶。TA5钛合金的最佳热加工工艺参数范围为870~990℃和0.005~0.05 s-1。  相似文献   

14.
唐徐  李落星  叶拓  李荣启 《材料导报》2017,31(10):87-91
采用分离式霍普金森(SHPB)压杆装置进行6013-T4铝合金动态压缩试验,获得温度为25℃、100℃、200℃、300℃、400℃,应变速率为1 000s~(-1)、2 000s~(-1)、3 000s~(-1)、4 000s~(-1)、5 000s~(-1)条件下材料的真应力-真应变曲线,并通过透射电子显微镜(TEM)观测了6013-T4铝合金在不同变形条件下的组织演变。结果表明:6013铝合金有明显的温度敏感性,但是对应变速率的敏感性较弱。应变速率和温度对6013铝合金微观组织的影响显著,位错密度随应变速率的升高而增大,随温度的升高而减小。基于实验数据,求得了6013铝合金Johnson-Cook模型的本构参数并建立其本构模型。与实验结果进行对比,结果表明,所建立的本构模型能够很好地预测6013铝合金的流变应力。  相似文献   

15.
使用Gleeble-1500D热模拟实验机对37CrS4特种钢进行单道次热压缩实验,研究了37CrS4钢在950~1100℃和0.01 s-1~10 s-1条件下的热压缩流变应力行为.结果 表明:这种钢的真应力应变曲线出现了明显的高温塑性变形动态再结晶行为;热变形后的微观组织为典型的板条状马氏体,发生动态再结晶行为的临...  相似文献   

16.
2124铝合金的热压缩变形和加工图   总被引:1,自引:0,他引:1  
采用热模拟实验研究2124铝合金在应变速率为0.01~10s-1、变形温度为340~500℃条件下的流变应力行为。结果表明:2124铝合金热变形过程中的流变应力可用双曲正弦本构关系来描述,平均激活能为170.13kJ/mol。根据动态材料模型,计算并分析2124铝合金的加工图。利用加工图确定热变形的流变失稳区,并且获得了实验参数范围内的热变形过程的最佳工艺参数,其热加工温度为450℃左右,应变速率为0.01~0.1s-1。  相似文献   

17.
The deformation behavior of 1Cr12Ni3Mo2VNbN martensitic steel in the temperature range of 1253 and 1453 K and the strain rate range of 0.01 and 10 s−1 are investigated by isothermal compression tests on a Gleeble 1500 thermal-mechanics simulator. Most of the stress-strain curves exhibit a single peak stress, after which the stress gradually decreases until a steady state stress occurs, indicating a typical dynamic recrystallization (DRX) behavior of the steel under the deformation conditions. The experimental data are employed to develop constitutive equations on the basis of the Arrhenius-type equation. In the constitutive equations, the effect of the strain on the deformation behavior is incorporated and the effects of the deformation temperature and strain rate are represented by the Zener-Holloman parameter. The flow stress predicted by the constitutive equations shows good agreement with the experimental stress, which validates the efficiency of the constitutive equations in describing the deformation behavior of the material.  相似文献   

18.
根据位错动力学理论,忽略动态应变时效因素,将塑性变形的流变应力分解为非热应力、热激活应力和粘拽阻力3部分,建立了一个基于物理概念的本构模型。对HSLA-65结构钢的力学行为进行了研究,试验温度为77~700K,应变率为0.001~0.1s-1,真实塑性应变超过60%。结果表明,塑性流变应力随温度的降低、应变和应变率的增加而增大;在一定的温度和应变率范围发生动态应变时效现象,并且随应变率的提高,该现象将移向更高的温区。通过模型预测与试验结果的比较可知,所给本构关系能很好地描述较宽的温度与应变率范围内的塑性流变应力。  相似文献   

19.
采用Gleeble-1500试验机对经过挤压比为12开坯后的γ-TiAl合金在温度为900~1100℃、应变速率为0.01~1s<'-1>、变形量为70%等温恒应变速率下的热变形行为进行了研究,获得了变形条件范围内的流变应力数据,并利用Ze-ner-Hollomn参数和Arrhenius方程得出γ-TiAl合金的本构方...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号