首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
《粘接》2021,48(10)
针对现有量子点影像探针存在荧光性质不可控、生物毒性强的问题,本研究结合现有的CuInS量子点探针,研究制备出一种掺杂Zn离子可简易合成的ZCIS/ZnS量子点纳米探针,并通过改进其水溶性,得到一种可直接应用于医学肿瘤影像的改进ZCIS/ZnS量子点纳米探针。为提高该量子点纳米探针的靶向性,研究根据EDC偶联的原理,通过将改进ZCIS/ZnS量子点纳米探针与cRGD多肽进行偶联,得到ZCIS/ZnS-cRGD量子点纳米探针,并从结构形态、细胞毒性和离体荧光3个方面重点评估了该量子点纳米探针,并通过实验论证了其有效性和实用性。实验结果证明,本研究制备的ZCIS/ZnS-cRGD量子点纳米探针是一种有效的肿瘤靶向探针,可用于实际肿瘤靶向检测。  相似文献   

2.
量子点是一种新型的半导体荧光纳米材料,由于其特殊的纳米结构所导致的表面、介电、量子等效应而具有许多优异的光学性能,近年来在分析化学、生物医学等领域得以快速应用和发展.介绍了量子点的制备方法、表面修饰及量子点荧光探针在生物医学领域的应用进展,并对未来的发展方向作出了展望.  相似文献   

3.
量子点作为新型纳米微晶,在生物标记方面有着无与伦比的应用前景.综述了量子点标记DNA的方法,以及量子点-DNA探针在检测DNA、蛋白质及DNA之间相互作用等领域的最新应用和进展.并对DNA探针在未来的应用进行了展望.  相似文献   

4.
采用半导体纳米晶(量子点,QD)作为吸光材料的量子点敏化太阳电池(QDSC)因具有高效率和低成本的潜质在新型太阳电池的研究中备受关注。近5年来,QDSC的光电转换效率发展迅速,由不足10%提高到了15%以上,具有良好的发展应用前景。其中,新型近红外CuInSe2基量子点吸光材料的设计开发以及负载量的显著增加促进了QDSC效率的快速提升。本文对近年来CuInSe2基量子点吸光材料的开发及其高负载沉积工艺的研究方面进行了总结评述。  相似文献   

5.
曾涛  隋小涛  殷官超  赵修建 《硅酸盐学报》2011,39(10):1629-1636
近年来,以胶体纳米晶半导体材料作为构建部分的第三代太阳能电池(又称为量子点太阳能电池)一直是研究的热门课题。胶体量子点在太阳能电池中应用之所以备受关注,是由于其具有类似溶液的可操作性,这无疑将极大地方便其整合到各种结构类型太阳能电池器件中。与传统硅基太阳能电池相比,量子点太阳能电池的制造成本可大幅度降低,重点介绍了几种...  相似文献   

6.
量子点表面化学的快速发展,使它们得到了越来越广泛的应用,因此开展有关量子点的应用研究工作具有十分重要的意义。本文参考了各CdS量子点的合成方法,采用水相合成法合成CdS量子点,考察了优化条件下量子点的荧光强度与维生素C离子浓度的关系。结果表明,一定浓度下的维生素C能使量子点荧光增强,并在一定范围内有良好的线性关系。由此提出以CdS量子点为荧光探针检测维生素C的新检验方法。该方法简单、快速且具有良好的灵敏性和选择性。  相似文献   

7.
纳米粒子在显示器、催化剂和生物医学等领域有着广泛的应用,其可控制备一直是研究的重点。与传统的间歇釜式生产工艺相比,微流控技术具有高效混合、传质传热快、反应条件精准可控以及可在线分析等特点,可用于高效连续化合成单分散纳米粒子,并为新型功能纳米粒子的开发提供了平台。本文主要介绍了近年来微流控技术在新型功能纳米粒子制备中的应用,重点综述了在量子点、金属及金属氧化物纳米粒子制备中的研究进展,并对其未来方向进行展望。  相似文献   

8.
量子点的制备及其在生物医学中的应用进展   总被引:1,自引:1,他引:0  
量子点作为一种优良的荧光半导体纳米粒子,已成为纳米技术领域最受关注的研究对象之一,并成功应用于生命科学等领域。随着小粒径的低毒无镉量子点的制备和量子点荧光共振能量转移等新技术的发展,量子点在生命科学领域将展示出更大的应用空间。本文介绍了量子点的基本概念和性质,探讨了近年来在有机溶剂和水溶液两种不同介质中制备量子点的方法,并分析比较了其优缺点;对量子点在生物医学领域(包括蛋白质和核酸研究、组分检测、荧光编码及细胞标记等)的应用进行了综述和展望,指出了目前存在的问题和今后的发展方向。  相似文献   

9.
介绍了量子点的性质、合成方法和修饰,就如何制备低毒及量子产率较高的量子点、如何完美的把量子点与生物分子偶联,以及量子点在荧光共振能量转移、离子检测、生物分子中的应用进行了论述并给予了展望。  相似文献   

10.
该文就量子点的合成方法,表征技术以及作为功能性探针的快速识别应用进行较为详尽的评述,展望了量子点作为功能性探针应用于快速识别领域的发展趋势。  相似文献   

11.
Quantum dots (QDs) are luminescent semiconductor nanocrystals with great prospective for use in biomedical and environmental applications. Nonetheless, eliminating the potential cytotoxicity of the QDs made with heavy metals is still a challenge facing the research community. Thus, the aim of this work was to develop a novel facile route for synthesising biocompatible QDs employing carbohydrate ligands in aqueous colloidal chemistry with optical properties tuned by pH. The synthesis of ZnS QDs capped by chitosan was performed using a single-step aqueous colloidal process at room temperature. The nanobioconjugates were extensively characterised by several techniques, and the results demonstrated that the average size of ZnS nanocrystals and their fluorescent properties were influenced by the pH during the synthesis. Hence, novel ''cadmium-free’ biofunctionalised systems based on ZnS QDs capped by chitosan were successfully developed exhibiting luminescent activity that may be used in a large number of possible applications, such as probes in biology, medicine and pharmacy.  相似文献   

12.
Y Xia  J Wang  Y Zhang  L Song  J Ye  G Yang  K Tan 《Nanoscale》2012,4(19):5954-5959
The design of fluorescent probes for turn-on sensing of anions has been especially significant because it can effectively enhance sensing sensitivity by decreasing the background interference. In the present work, we have systematically studied the potential applications of fluorescent quantum dots (QDs) in turn-on anion sensing. The fluorescence of QDs are firstly quenched by three different mechanisms, i.e. fluorescence resonance energy transfer, electron transfer and surface states modulated fluorescence. The fluorescence of the pre-quenched QDs can then be recovered by various anions due to the modulating effects of added anions on the interaction between QDs and QDs, the interaction between QDs and quenchers, and the surface chemistry of the quenched QDs, respectively. The results described here indicate that turn-on sensing of various anions by QDs-based systems can be achieved by rationally choosing fluorescence modulating strategies, demonstrating the versatility of QDs in the corresponding applications.  相似文献   

13.
In order to alleviate the effect of the surface defects on the emission properties of quantum dots, copper ions‐doped ZnSe quantum dots (QDs) in the glasses are prepared using melt‐quenching and subsequent thermal annealing methods. For glasses without copper doping, tunable band‐edge emission from ZnSe QDs is achieved. For glasses with copper doping, efficient energy transfer from ZnSe QDs to copper ions is observed, and efficient broad band emission from copper ions is realized at the expense of the band‐edge emission of ZnSe QDs. Absorption spectra, size‐dependent broad‐band emission spectra and electron spin resonance spectra show the cupric ions are doped into the ZnSe QDs. Results reported here shows that doping of transition‐metal ions into semiconductor QDs in glasses is promising for development of high efficient luminescent glasses.  相似文献   

14.
QDs may offer significant advantages in environmental and bead-based applications where the target cells need to be discriminated above background fluorescence. We have examined the possible applications of QDs for flow cytometric measurements (FCM) by studying their excitation - emission spectra and their binding to paramagnetic beads. We labelled beads with either QDs or a commonly-used fluorochrome (FITC) and studied their fluorescence intensity by FCM. Flow cytometric comparisons indicated that the minimum fluorophore concentration required for detection of QDs above autofluorescent background was 100-fold less than for FITC.  相似文献   

15.
CsPbBr1.5I1.5 quantum dots (QDs) glasses are synthesized by traditional melting and thermal treated method, CsPbBr1.5I1.5 QDs glasses show vast potential as red fluorescence component in warm WLED applications due to their moderate emission wavelength as well as good opacity property. However, the quantum yield of QDs glasses is still low, therefore, Eu3+ ions is chosen to introduce into CsPbBr1.5I1.5 QDs, the quantum yield is enhanced to 64.7%. After a sequence of testing operations, we find that 6.5%CsPbBr1.5I1.5:0.28%Eu3+ QDs glasses is a strong competitor among red fluorescence solid materials.  相似文献   

16.
Due to the widely tunable band gap and broadband excitation, CdS quantum dots (QDs) show great promise for yellow-light luminescence center in white-light-emitting devices. The light intensity of the CdS QD-doped glass was enhanced by doping the Tm3+ ions due to the higher absorption rate. The influence of Tm3+ ions on the surface structure of CdS QDs was enormous according to the first-principles calculations. Doping Tm3+ ions change the surface state of CdS QDs, which will fix the QDs emission peaks and enhance the luminescence of CdS QDs at a lower heat-treatment temperature. White-light emission was obtained by tuning the relative concentration between Tm3+/CdS QDs. However, there is a fundamental challenge to fabricate QD-doped glass fibers by rod-in-tube method since uncontrollable QDs crystallization is hard to avoid. Herein, a white-light-emitting borosilicate glass fiber was fabricated by the “melt-in-tube” method using a special designed Tm3+/CdS QDs co-doped borosilicate glass with low-melting temperature as fiber core. After heat treatment, ideal white-light emission was observed from the fiber under excitation at single wavelength (359 nm). This finding indicates that Tm3+/CdS QDs co-doped glass fiber with white-light-emitting devices has potential application as gain medium of white-light-emitting sources and fiber lasers.  相似文献   

17.
《Ceramics International》2021,47(20):28976-28984
In the era of Photonics, design and development of novel rare earth ion-doped quantum dots (QDs) for optoelectronic applications has gained significant interest owing to their outstanding characteristics. Simultaneously, the creation of a new class of photocatalytic materials on the nanoscale is also imperative for environmental purification. Thus, we report on wet chemical synthesis, the structural, morphological, and optical characteristics, fluorescence, and hydrogen evolution of ZnS:Eu (0, 2, 4, and 6 at%) QDs for optoelectronic and photocatalytic applications. Comprehensive structural studies depicted that Eu3+ ions were efficiently substituted into the host matrix and altered the original structure of the ZnS compound. The emission spectra of the ZnS:Eu QDs exhibited distinctive red fluorescence owing to the transition of dopant ions in 5D0 - 7F1, 5D0 - 7F2, 5D0 - 7F3, and 5D0 - 7F4 energy levels of the 4f orbital of the Eu3+ ions. Moreover, the photocatalytic properties of ZnS:Eu (6 at%) QDs possess better catalytic efficiency toward hydrogen evolution through a water splitting mechanism under simulated sunlight irradiation. The observed photocatalytic phenomenon in the synthesized samples agreed well with the luminescence properties exhibited by the QDs.  相似文献   

18.
受激辐射损耗超分辨成像可突破光学衍射极限的限制,获得纳米尺寸结构的超精细图像,荧光探针发挥了重要作用。本文主要介绍了受激辐射损耗超分辨显微成像的相关概念,包括基础光学概念、受激辐射损耗超分辨成像原理、成像系统,总结了受激辐射损耗超分辨成像荧光探针及其应用等研究进展,相信本工作能帮助化学、化工领域相关工作者了解受激辐射超分辨成像研究及其生物成像应用,尤其是可以用于该成像技术的荧光探针的相关知识,为设计、制备有效的受激辐射超分辨荧光探针提供设计思路。本文为荧光探针在生物医学光学领域的应用提出了新的需求与机遇,为化学、化工领域相关研究方向与光学成像领域的深度交叉与融合提供了新的发展契机。  相似文献   

19.
通过研究不同碱/锌、钐/锌物质的量比制备了分散性良好的Sm掺杂氧化锌量子点(ZnO QDs)。通过紫外可见光谱(UV-vis)、X射线衍射(XRD)、场致发射透射电子显微镜(TEM)、能量色散X射线谱(EDS)、X射线光电子能谱(XPS)对样品做了表征。研究结果表明,n(Zn)∶n(OH-)=1∶1、Sm掺杂量为4%(物质的量分数)时制备的ZnO QDs在383 nm紫外光激发下的荧光发射强度最强。并发现稀土钐离子的掺杂与ZnO QDs的氧空位(OV)形成有关。Sm掺杂后的ZnO QDs的氧空位浓度比未掺杂的高,且ZnO QDs氧空位的浓度越大,其荧光发射强度越强。  相似文献   

20.
Cellular imaging has emerged as an important tool to unravel biological complexity and to accelerate the drug-discovery process, including cell-based screening, target identification, and mechanism of action studies. Recently, semiconductor nanoparticles known as quantum dots (QDs) have attracted great interest in cellular imaging applications due to their unique photophysical properties such as size, tunable optical property, multiplexing capability, and photostability. Herein, we show that QDs can also be applied to assay development and eventually to high-throughput/content screening (HTS/HCS) for drug discovery. We have synthesized QDs modified with PEG and primary antibodies to be used as fluorescent probes for a cell-based HTS system. The G protein-coupled receptor (GPCR) family is known to be involved in most major diseases. We therefore constructed human osteosarcoma (U2OS) cells that specifically overexpress two types of differently tagged GPCRs: influenza hemagglutinin (HA) peptide-tagged κ-opioid receptors (κ-ORs) and GFP-tagged A3 adenosine receptors (A3AR). In this study, we have demonstrated that 1) anti-HA antibody-conjugated QDs could specifically label HA-tagged κ-ORs, 2) subsequent treatment of QD-tagged GPCR agonists allowed agonist-induced translocation to be monitored in real time, 3) excellent emission spectral properties of QD permitted the simultaneous detection of two GPCRs in one cell, and 4) the robust imaging capabilities of the QD-antibody conjugates could lead to reproducible quantitative data from high-content cellular images. These results suggest that the present QD-based GPCR inhibitor screening system can be a promising platform for further drug screening applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号