首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Sex differences in the activity of aromatase cytochrome P450 (CYP19) in the rat brain have been reported during pre- and postnatal development. It is unclear, however, whether these differences are reflected by corresponding differences in specific mRNA levels. To address this question, we have examined aromatase mRNA levels in specific regions of male and female rat brains by means of in situ hybridization (ISH). At prenatal stages of development, i.e. at gestational day 18 (GD18) and GD20, aromatase mRNA was detected in several preoptic, hypothalamic and limbic brain regions. Semiquantitative analysis of aromatase mRNA did not reveal sex differences in any of these regions. In contrast, clear-cut sex differences were determined at postnatal day (PN) 2; male animals expressed significantly more aromatase mRNA in the bed nucleus of stria terminalis (BST) and the sexually dimorphic nucleus of the preoptic area (SDN). Smaller but still significant differences (females > males) were obtained in the medial preoptic area (MPO). At PN6, sex differences of aromatase mRNA signals (males > females) were still present in the BST, but were no longer detectable in the SDN and the MPO. At PN15 and in adult animals, aromatase mRNA levels were similar in BST and medical amygdaloid nucleus of male and female rats. Since aromatase mRNA expression decreases during postnatal development, no ISH signals could be detected anymore in MPO, SDN and ventromedial hypothalamic nucleus. Our results are consistent with the concept that differential regulation of aromatase mRNA expression might be important for the establishment of different neuronal circuitry in male and female animals.  相似文献   

2.
Gonadal steroid hormone action during early postnatal life determines the growth and connectivity of certain neuronal populations in the hypothalamus. The results of recent studies indicate that steroid hormones modulate the growth-associated protein GAP-43 mRNA in the adult rodent hypothalamus. Since GAP-43 is concentrated in axonal growth cones and has been implicated in axonal elongation and synaptogenesis, the present study investigated the effect of various gonadal hormonal conditions on GAP-43 mRNA levels in postnatal rat brain. On postnatal day 1, male rats were castrated or sham-operated and injected with sesame oil. Additional intact female rats were also injected with oil, while a group of female pups were injected with testosterone propionate. On postnatal day 6, brains were frozen and 16-microns cryostat sections processed and hybridized with a 35S-labeled antisense riboprobe complimentary to GAP-43 mRNA. Slide-mounted sections were stringently washed, apposed to X-ray film and then dipped in liquid emulsion. Evaluation of slide and film autoradiograms revealed an extensive presence of GAP-43 mRNA in the medial preoptic nucleus, bed nucleus of the stria terminalis and cerebral cortex, while the intensity of hybridization signal in other brain regions including the striatum was low. Quantitative assessment of GAP-43 mRNA in the medial preoptic area revealed that the level of GAP-43 mRNA was highest in the sham-operated male, attenuated after male castration, low in the intact female and markedly augmented in the testosterone-treated female. The pattern of change in the bed nucleus of the stria terminalis and laminae II and III of the frontal cortex was similar to that observed in the preoptic area. The changes in hybridization signal were positively correlated with changes in serum testosterone levels as determined by RIA. The results of these studies indicate that GAP-43 mRNA levels in the medial preoptic area, bed nucleus of the stria terminalis and cerebral cortex are sexually dimorphic and modulated by changes in gonadal steroid hormone levels. The results further suggest that the differential regulation of GAP-43 mRNA by sex steroids in the male and female postnatal brain may influence the phenotype of forebrain neuronal circuitry and thereby determine the phenotype of adult neuronal function.  相似文献   

3.
Sexual differentiation of rodent brain is dependent upon hormonal exposure during a "critical period" beginning in late gestation and ending in early neonatal life. Steroid hormone action at this time results in anatomical and physiological sexual dimorphisms in adult brain, but the mechanism mediating these changes is essentially unknown. The inhibitory neurotransmitter, GABA, is involved in regulation of sexually dimorphic patterns of behavior and gonadotropin secretion in the adult. Recent evidence suggests that during development GABA is excitatory and provides critical neurotrophic and neuromodulatory influences. We hypothesized that steroid-induced changes in GABAergic neurotransmission during this critical period are important mediators of sexual differentiation in brain. Therefore, we quantified levels of mRNA for GAD, the rate-limiting enzyme in GABA synthesis. On Postnatal Day 1, males had significantly higher levels of GAD mRNA in the dorsomedial nucleus, arcuate nucleus, and CA1 region of hippocampus. On Postnatal Day 15, after the critical period for sexual differentiation has ended, these differences were no longer present. We examined the role of gonadal steroids in regulating GAD by removing testes of males and administering testosterone to females at birth. Exposure to testosterone was correlated with increased GAD mRNA in the dorsomedial nucleus. A sex difference in GAD mRNA was also observed in the medial preoptic area, but the influence of testosterone was inconclusive. We conclude that sex differences in the GABAergic system during development are partially hormonally mediated, and that these differences may contribute to the development of sexually dimorphic characteristics in adult brain.  相似文献   

4.
We have investigated the distribution of vasopressin binding sites in the brain of male and female adult mice using a radio-iodinated ligand and film autoradiography. Vasopressin receptors were uncovered in various regions of the brain including the basal nucleus of Meynert, the substantia innominata, the hypothalamic paraventricular nucleus, the substantia nigra pars compacta and the hypoglossal nucleus. A sex-related difference in the expression of vasopressin receptors was seen in the medial preoptic area/anterior hypothalamus corresponding to the rat sexually dimorphic nucleus in the rat and in the hypothalamic mammillary nuclei. In both structures the autoradiographic labeling is more intense in females than in males. These observations confirm that vasopressin binding sites are present in the hypothalamic preoptic area of most species examined so far and that sex-related expression of neuropeptide receptors could trigger sex-related behavioral differences.  相似文献   

5.
In the early eighties we found sex differences in the vomeronasal organ (VNO) and hypothesized that the vomeronasal system (VNS), a complex neural network involved in the control of reproductive behavior, might be sexually dimorphic. At that time sex differences had already been described for some structures that receive VNO input, such as the medial amygdala, the medial preoptic area, the ventromedial hypothalamic nucleus, and the ventral region of the premammillary nucleus. Since then, we have shown sex differences in the accessory olfactory bulb (AOB), the bed nucleus of the accessory olfactory tract (BAOT), and the bed nucleus of the stria terminalis (BST). When new VNS connections were found, all of them ended in nuclei that present sex differences. In general, sex differences in the olfactory system show two morphological patterns: one in which males present greater morphological measures than females, and just the opposite. To explain the morphometric measures of males in the latter, it has been hypothesized that androgens serve as inhibitors. Our work on the involvement of the GABA(A) receptor in the development of AOB and maternal behavior sex differences also suggests that neonatal changes in neuronal membrane permeability to the ion Cl- differences. This might be the first animal model to help us to understand the situation in which human genetic and gonadal sex do not agree with brain and behavioral sex. Finally, we stress that sex differences in the VNS constitute a neurofunctional model for understanding sex differences in reproductive behaviors.  相似文献   

6.
The sexually dimorphic profile of GH secretion is thought to be engendered by gonadal steroids acting in part on hypothalamic periventricular somatostatin (SOM) neurons. The present study set out to examine and characterize the development of sex differences in these SOM neurons. In the first series of experiments, we used in situ hybridization to examine SOM messenger RNA (mRNA) expression within the periventricular nucleus (PeN) of male and female rats on postnatal day 1 (P1), P5, and P10. Cellular SOM mRNA content was found to increase from P1 to P10 in both sexes (P < 0.01), but was 24% (P < 0.05) and 38% (P < 0.01) higher in males on P5 and P10, respectively. A second series of experiments examined the SOM peptide content of the PeN in developing rats and found increasing levels from P1 to P10, with a 44% higher SOM content in males compared with females on P10 (P < 0.05). The third series of experiments questioned the role of gonadal steroids in engendering sex differences in SOM mRNA expression by determining the effects of neonatal gonadectomy (GDX) and replacement of dihydrotestosterone or estradiol benzoate. The SOM mRNA content of PeN neurons in P5 males gonadectomized on the day of birth was the same as that in P5 females and was significantly reduced compared with that in sham-operated P5 males (P < 0.05). Male rats GDX on P1 and treated with estradiol benzoate from P1 to P5 had cellular SOM mRNA levels similar to those in intact males on P5, whereas dihydrotestosterone treatment had no effect. Treatment of intact males with an androgen receptor antagonist, cyproterone acetate, on P1 had no effect on cellular SOM mRNA on P5, whereas male rats given the aromatase inhibitor 1,4,6-androstatriene-3,17-dione from P1 to P5 had lower (P < 0.05) SOM mRNA levels than controls. In the final set of experiments, dual labeling immunocytochemistry showed that SOM neurons in the PeN of P5 rats did not contain estrogen receptor-alpha, but expressed androgen receptors in a sexually dimorphic manner. These results demonstrate that a sex difference in SOM biosynthesis, which persists into adulthood, develops between P1 and P5 in PeN neurons. Despite the absence of estrogen receptor-alpha in these neurons, the organizational influence of testosterone only occurs after its aromatization to estrogen.  相似文献   

7.
The principal nucleus of the bed nuclei of the stria terminalis (BSTp) is larger in male rats and conveys olfactory information relevant for reproduction to the hypothalamus. In males, the BSTp provides a massive projection to the anteroventral periventricular nucleus of the preoptic region (AVPV), which in contrast to most sexually dimorphic nuclei contains more neurons in female rats. Injections of the anterograde tracer Phaseolus vulgaris leucoagglutinin into the BSTp of adult female rats failed to demonstrate the strong projection to the AVPV observed previously in males. The ontogeny of this robust sex difference was examined by using the axonal marker DiI. The projection from the BSTp to the AVPV is established between postnatal day 9 (P9) and P10 in male rats and seems to be maintained during the juvenile period. Although labeled fibers extended from the BSTp toward the preoptic region in both male and female neonates, a similar connection with the AVPV was not apparent in female rats at any of the ages studied, and the density of labeled axons in the AVPV of P10 males was 20-fold greater than that of P10 females. A projection from the BSTp to the medial preoptic nucleus was also weaker in females but was much more substantial than that to the AVPV. These findings suggest that a sex- and region-specific activity influences the development of the projection from the BSTp to the AVPV, producing a sexually dimorphic architecture in pathways that convey olfactory information to the hypothalamus.  相似文献   

8.
Using quantitative in situ hybridization histochemistry (ISHH), we determined the effect of castration on single cell levels of glutamic acid decarboxylase (GAD) mRNA in discrete hypothalamic regions of the male rat brain associated with the control of gonadotropin secretion. A 48-base oligodeoxynucleotide probe was used to detect with equal affinity the two isoforms of GAD message, GAD65 and GAD67. GAD message also was quantitated in a number of selected areas of the brain to contrast GAD gene expression amongst several populations of GABAergic neurons. Comparison of 11 brain regions demonstrated a 9.3-fold range in the quantity of single cell GAD mRNA with levels being highest in the amygdala and the diagonal band of Broca, moderate in the piriform cortex, caudate nucleus, substantia innominata, globus pallidus, cingulate cortex and medial septal nucleus, and lowest in the lateral septal nucleus and the medial preoptic nucleus (MPN). Castration markedly reduced single cell GAD mRNA levels in the DBB and the MPN, two discrete hypothalamic structures known to contain dendritic fields, cell bodies, and axons of GnRH neurons projecting to the median eminence. A striking finding was a dense core of steroid-sensitive GABAergic neurons within the MPN comprising the sexually dimorphic nucleus of the preoptic area (SDN-POA). Similar to the MPN as a whole, the amount of GAD mRNA expressed by cells in the SDN-POA of sham operated control rats was greater than in castrated animals. GAD mRNA levels were inversely related to serum LH titers, suggesting a role for these neurons in the mechanism controlling gonadal steroid negative feedback on LH secretion. This report provides the basis for future work to determine if GAD65, GAD67 or whether both isoforms are affected by gonadal steroid input.  相似文献   

9.
Neurocircuit inhibition of hypothalamic paraventricular nucleus (PVN) neurons controlling hypothalamo-pituitary-adrenocortical (HPA) activity prominently involves GABAergic cell groups of the hypothalamus and basal forebrain. In the present study, stress responsiveness of GABAergic regions implicated in HPA inhibition was assessed by in situ hybridization, using probes recognizing the GABA-synthesizing enzyme glutamic acid decarboxylase (GAD65 and GAD67 isoforms). Acute restraint preferentially increased GAD67 mRNA expression in several stress-relevant brain regions, including the arcuate nucleus, dorsomedial hypothalamic nucleus, medial preoptic area, bed nucleus of the stria terminalis (BST) and hippocampus (CA1 and dentate gyrus). In all cases GAD67 mRNA peaked at 1 hr after stress and returned to unstimulated levels by 2 hr. GAD65 mRNA upregulation was only observed in the BST and dentate gyrus. In contrast, chronic intermittent stress increased GAD65 mRNA in the anterior hypothalamic area, dorsomedial nucleus, medial preoptic area, suprachiasmatic nucleus, anterior BST, perifornical nucleus, and periparaventricular nucleus region. GAD67 mRNA increases were only observed in the medial preoptic area, anterior BST, and hippocampus. Acute and chronic stress did not affect GAD65 or GAD67 mRNA expression in the caudate nucleus, reticular thalamus, or parietal cortex. Overall, the results indicate preferential upregulation of GAD in central circuitry responsible for direct (hypothalamus, BST) or multisynaptic (hippocampus) control of HPA activity. The distinct patterns of GAD65 and GAD67 by acute versus chronic stress suggest stimulus duration-dependent control of GAD biosynthesis. Chronic stress-induced increases in GAD65 mRNA expression predict enhanced availability of GAD65 apoenzyme after prolonged stimulation, whereas acute stress-specific GAD67 upregulation is consistent with de novo synthesis of active enzyme by discrete stressful stimuli.  相似文献   

10.
The central natriuretic peptide system is composed of at least three structurally homologous and uniquely distributed peptides and receptors which are thought to be involved in the central regulation of cardiovascular and autonomic function and more recently been shown to affect cellular growth and proliferation, processes pertinent to mammalian development. As such, following our initial mapping of preproatrial natriuretic peptide (ppANP) mRNA in adult brain [M.C. Ryan, A.L. Gundlach, Anatomical localization of preproatrial natriuretic peptide mRNA in the rat brain by in situ hybridization histochemistry: in olfactory regions, J. Comp. Neurol., 356 (1995) 168-182], it was of interest to determine the ontogenic expression of natriuretic peptide mRNAs in the developing rat brain. Using in situ hybridization histochemistry of specific [35S]- or [33P]-labeled oligonucleotides, ppANP and preproC-type natriuretic peptide (ppCNP) mRNAs were detected in the developing rat brain from postnatal day 4 to day 60 (adult). PpANP mRNA was observed in many hindbrain, but only some forebrain, regions at postnatal day 4. Regional differences in the temporal expression of ppANP mRNA were apparent with ppANP mRNA detected in the medial preoptic area, mammillary nuclei and medial habenular nucleus at postnatal day 4 and in other areas including the arcuate and dorsomedial hypothalamic nuclei and in olfactory and limbic regions at postnatal day 10. A number of regions also exhibited transient expression of ppANP mRNA such as the bed nucleus of the stria terminalis and the medial cerebellar nucleus. In contrast, ppCNP mRNA was detected at relatively high levels in several regions on postnatal day 4 including olfactory nuclei, the hippocampus and particularly the pontine nucleus. The level of expression appeared to increase markedly in most regions including forebrain olfactory and hippocampal areas and in brainstem regions including the pontine nucleus, the parvocellular and lateral reticular and spinal trigeminal nuclei by postnatal days 10 and 13, but decreased from this peak to equivalent to adult levels by postnatal day 28. The differential and transient expression of the natriuretic peptides during postnatal development, together with previous reports of the ontogenic regulation of natriuretic peptide receptor expression and binding patterns, further suggests their involvement in developmental processes in the rat CNS and provides information relevant to the likely functional development of natriuretic peptide-utilizing pathways.  相似文献   

11.
The sexually dimorphic area of the gerbil hypothalamus is essential for male sex behavior. To determine which aspects of mating activate its cells, or cells near or connected to it, we visualized c-Fos in the brains of male gerbils that had been exposed to various types of sex-related stimuli or that had displayed various aspects of sex behavior. Five groups of males were placed in familiar arenas containing sex-related odors. All subjects had previously mated in these arenas. For four groups, a female was introduced and remained with the male until he ejaculated, intromitted, mounted or sniffed her. Males in the fifth group remained in the arena alone. Males in a sixth group were placed in a clean arena in another room. These males were also familiar with this arena but had never encountered a female there. The seventh group remained in their home cages. The posterodorsal preoptic nucleus, the lateral part of the posterodorsal medial amygdala, the medial part of the sexually dimorphic area and the parvicellular part of the subparafascicular nucleus of the thalamus expressed c-Fos after ejaculation. Whether these cells triggered ejaculation or responded to it is not clear. The latter two areas also expressed c-Fos whenever males were exposed to the sex arena, but the sexually dimorphic area pars compacta did not express c-Fos under any condition. The medial core of the nucleus accumbens, the ventrolateral septum, the caudomedial bed nucleus of the stria terminalis, the medial/central part of the posterodorsal medial amygdala and the lateral part of the sexually dimorphic area also expressed c-Fos when males entered the sex arena. The ventrolateral part of the ventromedial nucleus of the hypothalamus expressed c-Fos whenever males were with females. None of the 31 areas studied responded to mounting or intromission, but the zona incerta, the amygdalohippocampal area, the lateral part of the sexually dimorphic area and the area lateral to the medial part of the sexually dimorphic area showed progressive increases in c-Fos expression as mating progressed. The area dorsal to the medial part of the sexually dimorphic area, the paraventricular nucleus of the hypothalamus, the ventral premammillary nucleus and the retrorubral field showed the same level of c-Fos expression when males were exposed to the non-sexual context as when they were exposed to the sexual one. While a projection to the retrorubral field from the sexually dimorphic area is critical for male sex behavior, the retrorubral field did not show a sex-related c-Fos response. The data suggest that brain regions involved in male sex behavior are involved in different aspects of it and that this can also apply to different subsets of cells in each area. The data also indicate that cells involved in mating do not necessarily show mating-related patterns of c-Fos expression. Thus, while c-Fos is useful for identifying areas involved in mating, or other behaviors, its characteristics could cause relevant areas to be overlooked.  相似文献   

12.
Testosterone and its metabolites are the principal gonadal hormones responsible for sexual differentiation of the brain. However, the relative roles of the androgen receptor (AR) vs. the estrogen receptor in specific aspects of this process remain unclear due to the intracellular metabolism of testosterone to active androgenic and estrogenic compounds. In this study, we used an 35S-labeled riboprobe and in situ hybridization to analyze steady state, relative levels of AR messenger RNA (mRNA) expression in the developing bed nucleus of the stria terminalis, medial preoptic area, and lateral septum, as well as the ventromedial and arcuate nuclei of the hypothalamus. Each area was examined on embryonic day 20 and postnatal days 0, 4, 10, and 20 to produce a developmental profile of AR mRNA expression. AR mRNA hybridization was present on embryonic day 20 in all areas analyzed. In addition, AR mRNA expression increased throughout the perinatal period in all areas examined in both males and females. However, between postnatal days 4 and 10, sharp increases in AR mRNA expression in the principal portion of the bed nucleus of the stria terminalis and the medial preoptic area occurred in the male that were not paralleled in the female. Subsequently, males exhibited higher levels of AR mRNA than females in these areas by postnatal day 10. There was no sex difference in AR mRNA content in the lateral septum, ventromedial nucleus, or arcuate nucleus at any age. These results suggest that sex differences in AR mRNA expression during development may lead to an early sex difference in sensitivity to the potential masculinizing effects of androgen.  相似文献   

13.
Vasopressin-immunoreactive (AVP-ir) cells in the bed nucleus of the stria terminalis (BST) and medial amygdaloid nucleus (MAN) and their AVP-ir projections to the lateral septum were studied in monogamous prairie voles (Microtus ochrogaster) and promiscuous meadow voles (M. pennsylvanicus). A sexually dimorphic AVP-ir pathway was found in both species; males had more AVP-ir cells in the BST and MAN, as well as denser AVP-ir fibers in the lateral septum, than did females. A significant species difference was also found. Overall, meadow voles had more AVP-ir cells in the BST and MAN than did prairie voles. Male prairie voles, however, had a higher density of AVP-ir fibers in the lateral septum than male meadow voles. The species difference in the sexually dimorphic AVP-ir projections in the BST and MAN is implicated in the rodents' different life strategy and behavior. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

14.
15.
It has been shown that sexual dimorphic morphology of certain hypothalamic and limbic areas underlie gender-specific sexual behavior and neuroendocrine mechanisms. The key role played by locally formed estrogen in these developmental events has been revealed during a critical perinatal period. In this study, we aimed to document the presence of estrogen-synthetase (aromatase)-immunoreactive elements in the involved limbic system and hypothalamus of the developing rat brain. On postnatal day 5, animals of both sexes were perfusion-fixed, and sections from the forebrain and hypothalamus were immunolabelled for aromatase using an antiserum that was generated against a 20 amino acid sequence of placental aromatase. Aromatase-immunoreactivity was present in neuronal perikarya and axonal processes in the following limbic structures: the central and medial nuclei of the amygdala, stria terminalis, bed nucleus of the stria terminalis (BNST), lateral septum, medial septum, diagonal band of Broca, lateral habenula and all areas of the limbic (cingulate) cortex. In the hypothalamus, the most robust labelling was observed in the medial preoptic area, periventricular regions, ventromedial and arcuate nuclei. The most striking feature of the immunostaining with this antiserum was its intracellular distribution. In contrast to the heavy perikaryal labelling that can be observed with most of the currently available aromatase antisera, in the present experiments, immunoperoxidase was predominantly localized to axons and axon terminals. All the regions with fiber staining corresponded to the projection fields of neuron populations that have previously been found to express perikaryal aromatase. Our results confirm the presence of aromatase-immunoreactivity in developing limbic and hypothalamic areas. The massive expression of aromatase in axonal processes raises the possibility that estrogen formed locally by aromatase may not only regulate the growth, pathfinding and target recognition of its host neuronal processes, but may also exert paracrine actions on structures in close proximity, including the target cells.  相似文献   

16.
In the rat, alternatively spliced messenger RNA (mRNA) species encode GH receptor (GHR) and GH-binding protein (GHBP). Additionally, these mRNAs are alternatively spliced in the 5'-untranslated region, resulting in at least two classes of GHR and GHBP mRNA with distinct first exons and identical coding regions. These alternative first exons define two unique classes of GHR and GHBP mRNA (called GHR1 and GHR2). The GHR1 class of RNA is expressed only in the liver, is far more abundant in females than males, and is particularly abundant during pregnancy. GHR1 RNA is induced later in development than is GHR2. Additional classes of GHR and GHBP RNA may also exist. The genomic structure of the GHR1 first exon reveals a putative promotor region with no TATA box, CAAT box, or other sequence elements suggesting specific responses. An in vivo approach was used to investigate the regulation of GHR1 expression. In female rats, gonadectomy was found to reduce the percentage of steady state GHR1 RNA levels in the liver, whereas male castration resulted in an induction of GHR1 RNA. However, short-term treatment with estrogen or testosterone had little effect, suggesting that direct regulation of GHR1 expression may occur through effector(s) other than gonadal steroids. Hypophysectomy abolished GHR1 RNA in females. Treatment of hypophysectomized females and castrated males with GH by single injection did not significantly induce GHR1 RNA, but treatment by continuous infusion of GH did. Little change in non-GHR1 RNA levels was observed for each of these treatments. The results suggest that: 1) the sexual dimorphism observed in total GHR and GHBP RNA in rat liver is attributable to the sexually dimorphic expression of the GHR1 class of RNA; 2) the sexually dimorphic pattern of GH release in rats regulates the GHR1 class of RNA; 3) changes in GHR and GHBP expression observed on gonadectomy, hypophysectomy, GH treatment, and pregnancy are best attributed to GHR1 regulation; and 4) since GHR1 is liver specific, the observed increases in serum GHBP concentration in response to sex steroids, GH pattern, and pregnancy are likely to originate from the liver.  相似文献   

17.
Progesterone receptor (PR) messenger RNA (mRNA) is concentrated in neurons of the preoptic area and other regions of the rat hypothalamus where it is colocalized with the estrogen receptor and regulated by changes in the steroid hormonal milieu. To date, little is known about the regulation of PR mRNA by estrogens and whether antiestrogenic compounds are capable of modulating its expression. The present studies used in situ hybridization to ascertain the time course of PR mRNA regulation in the medial preoptic nucleus by 17beta-estradiol, determine the effective dose required to elicit a response, and compare the efficacy of 17beta-estradiol with a variety of estrogenic or antiestrogenic compounds. The first series of studies revealed that the treatment of ovariectomized rats with 17beta-estradiol resulted in an increase in PR expression within 2 h, after which it remained elevated until 10 h postinjection and then returned to baseline levels. When ovariectomized rats were injected with 25-1000 ng/kg of 17beta-estradiol and euthanized 6 h later, a dose-dependent increase in the level of PR mRNA was observed, with a maximal response at 1000 ng/kg and an EC50 of 93.5 ng/kg. Subsequent studies evaluated the efficacy of a variety of estrogenic and antiestrogenic compounds in the rat preoptic nucleus. 17Beta-estradiol, diethylstilbestrol, and 17alpha-estradiol all significantly increased the level of PR mRNA, although the degree of induction varied with each compound. The injection of tamoxifen, raloxifene, toremifene, droloxifene, clomiphene, GW 5638, or ICI 182,780 had no significant estrogenic effect on PR gene expression at the dose evaluated. In contrast, when tamoxifen or raloxifene, but not ICI 182,780, was administered in the antagonist mode, a significant dose-related decrease in the estradiol-induced level of PR mRNA was seen in the preoptic area. The results of these studies clearly demonstrate that PR mRNA expression in the rat preoptic area is rapidly stimulated by a small dose of 17beta-estradiol. Moreover, the present report has also shown that the estrogenic nature of compounds such as tamoxifen, raloxifene, toremifene, droloxifene, clomiphene, and GW 5638 cannot be predicted by their activity in peripheral tissues. Together, the results of these studies provide important information about the central activity of estrogens and provide evidence for their tissue-specifc actions in the rat.  相似文献   

18.
It is well-known that central administration of tachykinins (Tks) inhibit salt intake in rats. Recent studies have shown that conditions that arouse salt appetite, such as adrenalectomy and sodium depletion, induce a decrease in preprotachykinin-A (PPT-A) mRNA in discrete regions of the rat brain, suggesting that reduced levels of PPT-A mRNA in the brain may have a permissive role on the expression of salt appetite. It has also been shown that spontaneously hypertensive rats (SHR) show higher avidity for salty solutions than their normotensive control Wistar-Kyoto (WKY) rats. In this regard, the present study tested whether SHR and WKY rats differ in expression of the gene coding for PPT-A, the precursor for Tks peptides. Using semi-quantitative in situ hybridization histochemistry, we examined the level of PPT-A mRNA in discrete rat brain regions of SHR and WKY rats under no treatment, after 1 or 3 days of Na+ depletion. Levels of PPT-A mRNA were analysed in the olfactory tubercle (Tu), in the lateral olfactory tubercle (LOT), in the dorsal and ventral caudate putamen (d/v CPu), in the medial preoptic area (mPOA), in the bed nucleus of the stria terminalis (BNST), in the habenula (Hb) and in the postero-dorsal part of the amygdala (MePD). Semi-quantitative analysis of silver grains revealed a 27.5% lower expression of the PPT-A mRNA levels in SHR opposite to WKY rats under no treatment in v-CPu, mPOA, BNST and Hb. 1 day of Na+ depletion reduced PPT-A mRNA levels when opposite to Na+-repleted animals in Tu and mPOA in both SHR and WKY rats. On the other hand, when comparing SHR and WKY rats after 1 day of Na+ depletion, a 26% lower level of PPT-A mRNA was detected in Tu and d-CPu of SHR opposite to WKY rats whereas a 14% and an 18% lower level was detected in v-CPu and Hb, respectively. A lower expression of PPT-A mRNA in SHR compared to WKY rats was also found in BNST and MePD, although no statistical significance was detected in these two brain areas. In the last experiment, 3 days of Na+ depletion reduced PPT-A mRNA levels in mPOA while negligibly increased mRNA levels in d-CPu and v-CPu, in BNST, Hb and MePD, both in SHR and WKY rats. Conversely, when making comparisons between the two strains, a 35% lower level of PPT-A mRNA in SHR with respect to WKY rats was found after 3 days of Na+ depletion in d-CPu, v-CPu and mPOA. A lower gene expression, even though not statistically significant, was found in Tu, LOT, MePD. These findings show a consistent difference of PPT-A mRNA levels in discrete regions of the SHR brain opposite to WKY rats and confirm that 1 day of Na+ depletion reduces PPT-A mRNA in discrete brain regions. Since SHR are notoriously more salt-avid than WKY rats and Tks are potent inhibitors of sodium intake, the down-regulation of PPT-A mRNA may contribute to the higher natriophilia and, therefore, to the etiology of the hypertensive disease.  相似文献   

19.
20.
The neurotoxic effect of monosodium L-glutamate (MSG) on the morphologies in the darkly stained sexually dimorphic nucleus of the preoptic area (SDN-POA) and the lighter-staining surrounding area (non-SDN-POA) within the medial preoptic nucleus (MPN) was evaluated. Male and female Long-Evans rats were used. MSG (4 mg/g of body weight) was administered subcutaneously to pups on days 1 and 3 postnatally. Normal saline was used as the vehicle. At the age of 6 months, the rats were sacrificed and the brain tissues were fixed for histological examination. The morphological changes, i.e., total volume, density, total neuron number, neuronal nuclear volume (NNV) and ratio of pyknosis, of the SDN-POA and non-SDN-POA within the MPN, were estimated using the AMS VIDS III semiautomatic image-analytic system. The results indicate that neonatal MSG treatment caused significant neuronal loss and decreases in total volume of the SDN-POA and non-SDN-POA of male and female rats. However, only the SDN-POA of MSG-treated male rats showed a significant increase of pyknosis and decrease of neuronal density. A significant enlargement of NNV in the SDN-POA and non-SDN-POA was observed in the MSG-treated male rats. These results indicate that the MPN shows sex-specific and area-specific changes after neonatal neurotoxicity due to MSG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号