首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
通过对退火态的Al-Zn-Mg-Cu系铝合金在523 K加热进行不同道次等径通道挤压(ECAP),采用120°模具在Bc路径下经10次ECAP变形后等效真应变达到6.2.试验结果表明,退火态合金试样ECAP挤压后晶粒明显细化,8道次之后晶粒细化趋于缓和,10道次后获得晶粒尺寸为0.8 μm左右的等轴状组织.性能测试结果表明:合金的显微硬度、抗拉强度及伸长率随着ECAP变形道次的增加而增大,ECAP提高了合金的综合力学性能,显著地改善了合金的塑性.  相似文献   

2.
研究了退火、固溶、双级时效以及回归(RRA)热处理4种前处理工艺对Al-Zn-Mg-Cu系铝合金多道次等径通道挤压(ECAP)变形过程的影响。试验结果表明,退火态试样在常温下只能进行2道次ECAP变形,而其余3种状态常温下经1次ECAP变形后便发生严重的开裂现象。退火处理后的试样采用523K温度加热可进行多次ECAP变形,挤压后晶粒明显细化且逐渐向等轴状演化。8道次之后晶粒细化趋于缓和,10道次后等效真应变达到了6.2,晶粒为0.8μm左右的等轴状。随着挤压道次的增加,试样显微硬度不断增大,且存在定量关系。  相似文献   

3.
通过挤压+等通道转角挤压(ECAP)复合加工工艺制备了超细晶Mg-2.5Zn-1Ca合金,采用OM、SEM、XRD、EBSD等手段分析变形过程中微观结构演变特征,结合力学性能变化,研究变形过程中合金强化机制。结果表明,经挤压+ECAP变形后,晶粒与第二相颗粒明显细化,其中挤压+2道次ECAP后获得了均匀的细晶组织,平均晶粒尺寸约1.1μm;同时,细小的Ca2Mg6Zn3颗粒弥散分布于基体中。晶粒细化是剧烈塑性变形、动态再结晶和细小弥散的Ca2Mg6Zn3相共同作用的结果。ECAP变形使合金的力学性能显著提高,2道次有最高的抗拉强度和延伸率,分别为275 MPa和17%。随着ECAP变形道次的增加,织构强度逐渐减弱,基面织构逐渐转变为一种新的织构,并且ECAP变形合金有较高的非基面施密特因子,组织均匀细化,使得材料有更好的延伸率。  相似文献   

4.
利用等通道转角挤压(ECAP)技术,在200℃对Mg-6Zn合金进行了不同道次的挤压。结果表明,经ECAP挤压后合金显微组织明显细化、均匀化,平均晶粒尺寸由15μm减小到3μm;ECAP过程中粗大的块状共晶相变形破碎、细化,并在周围诱发新相析出。通过XRD分析发现析出相主要是Mg_4Zn_7和MgZn_2。经过2道次ECAP挤压后,Mg-6Zn合金的抗拉强度可达275 MPa,屈服强度达到245 MPa,伸长率为24%。当ECAP道次增加到4道次和6道次后,强度反而下降。  相似文献   

5.
等通道转角挤压Al-10Mg-4Si合金的组织与性能研究   总被引:1,自引:1,他引:0  
在250℃下以Bc路径对Al-10Mg-4Si合金进行4道次和8道次的等通道转角挤压,以求达到改善合金组织和提高合金力学性能的目的.扫描电子显微镜(SEM)和透射电子显微镜(TEM)对挤压前后的微观组织分析表明:铸态合金基体晶粒比较粗大,第二相Mg_2Si以粗大的汉字状或骨骼状分布于基体晶界处;经ECAP挤压后,基体晶粒得到细化,原粗大的汉字状Mg_2Si被碎化为短棒状或多边形状颗粒,并呈一定的弥散分布.室温拉伸测试结果表明:ECAP4道次挤压后,合金的抗拉强度和伸长率由铸态的166MPa、1.64%提高为322MPa、21.7%;ECAP8道次挤压后,合金的伸长率继续提高为24.7%.但抗拉强度下降到293MPa.  相似文献   

6.
研究了退火、固溶、双级时效以及回归(RRA)热处理4种前处理工艺对Al-Zn-Mg-Cu系铝合金多道次等径通道挤压(ECAP)变形过程的影响.试验结果表明,退火态试样在常温下只能进行2道次ECAP变形,而其余3种状态常温下经1次ECAP变形后便发生严重的开裂现象.退火处理后的试样采用523 K温度加热可进行多次ECAP变形,挤压后晶粒明显细化且逐渐向等轴状演化.8道次之后晶粒细化趋于缓和,10道次后等效真应变达到了6.2,晶粒为O.8 μm左右的等轴状.随着挤压道次的增加,试样显微硬度不断增大,且存在定量关系.  相似文献   

7.
对高铝双相合金Mg15A1在553K以Bc路线进行了不同道次的等通道挤压(ECAP),获得了超细晶高铝镁合金。通过OM,SEM,TEM分析了ECAP前后合金的微观组织结构及断口形貌,并测试了不同挤压道次后合金的硬度和室温拉伸性能,分析了ECAP细化晶粒机理及其性能改善原因。结果表明,随挤压道次增加,累计形变增强,网状硬脆相β-Mg17Al12破碎,合金晶粒显著细化,但对单相区和两相混合区细化效果不同。在α、β两相共存区内,4道次ECAP后形成100nm-200nm的细晶粒;在α单相区,4道次ECAP后晶粒为1μm以下,且在初晶α-Mg内析出弥散细小的β相,起到细晶强化和弥散强化作用。8道次ECAP后,晶粒略有长大。ECAP使合金的硬度、抗拉强度和延伸率同时得到提高,尤其是4道次ECAP后,硬度提高了32.04%,抗拉强度σb从150MPa提高到269.3MPa,延伸率δ由0.05%提高到7.4%;8道次ECAP后,硬度、抗拉强度略有下降,延伸率略有上升。SEM断口观察显示ECAP使合金拉伸断口形貌由铸态的解理断裂特征转变为延性韧窝断裂特征。  相似文献   

8.
采用OM、SEM、XRD对铸态和等通道角挤压(ECAP)变形后Mg-4.5Zn-1Ca(wt%)合金的微观组织进行了表征。通过电化学工作站和浸泡法评估了ECAP变形前后合金在模拟体液(SBF)中的腐蚀性能。结果表明,铸态Mg-4.5Zn-1Ca合金显微组织由α-Mg基体及分布在晶界处和晶粒内的Ca2Mg6Zn3相组成,平均晶粒尺寸为86μm。经ECAP变形后,合金的晶粒尺寸得到显著细化,经6道次ECAP变形后的平均晶粒尺寸为5μm。随着ECAP变形道次的增加,第二相在镁基体中的分布更加均匀、弥散。ECAP变形后合金更容易发生腐蚀,挤压道次越多,合金的自腐蚀电位越负,自腐蚀电流越大,即耐蚀性越差。经6道次ECAP变形后合金的自腐蚀电位最负(-1.42 V),自腐蚀电流最大(407.38μA/cm~2),耐蚀性最差。  相似文献   

9.
研究了5083铝合金等通道转角挤压(ECAP)的室温拉伸性能.结果表明:5083铝合金经100℃、16道次ECAP挤压后,晶粒明显细化且第二相均匀弥散分布,合金的强度提高至480MPa;200℃、16道次ECAP挤压后,合金强度有所下降(约380MPa),但塑性显著改善(伸长率16%以上);降低ECAP挤压温度、增加挤压道次可获得更高的挤压硬化和细晶强化效果,在100℃ECAP挤压和200℃退火同样可提高该合金的抗拉强度和塑性变形能力.  相似文献   

10.
以铸造Mg-xY(x=0,1,5wt%)合金为研究对象,研究了其在等径角挤压(ECAP)过程中显微组织和力学性能的变化.结果表明:Y元素的添加和道次的增加大幅度细化了Mg-Y合金组织,ECAP中晶粒细化伴随着硬度上升.Mg-5Y合金经过4道次ECAP后平均晶粒尺寸为10.0 μm,与铸造Mg-5Y合金相比,抗拉强度提高...  相似文献   

11.
12.
13.
论述了CAD技术中参数化设计的三种建模方法,重点介绍了基于特征的参数化建模原理。在此基础上,分析机械设计中的机构结构,归纳出其零件的几何特征构成。设计了机构CAD图形库,并提出了该图形库生成步骤和人机交互界面。  相似文献   

14.
刘兴  赵霞 《表面技术》2008,37(1):37-39
采用激光辐照对FeCrAlW电弧喷涂层的组织进行致密化处理,借助扫描电镜和X衍射对涂层的组织进行了分析.测试了涂层的显微硬度.结果表明:涂层组织致密度提高,孔隙率明显降低.随着激光扫描速度的增加,涂层的显微硬度降低.在较低的扫描速度下,涂层与基体之间形成互熔区,涂层与基体之间产生良好的冶金结合.  相似文献   

15.
16.
扫描电镜观察显示胫骨是一种由羟基磷灰石和胶原蛋白组成的自然生物陶瓷复合材料.羟基磷灰石具有层状的微结构并且平行于骨的表面排列.观察也显示这些羟基磷灰石层又是由许多羟基磷灰石片所组成,这些羟基磷灰石片具有长而薄的形状,也以平行的方式整齐排列.基于在胫骨中观察到的羟基磷灰石片的微结构特征,通过微结构模型分析及实验,研究了羟基磷灰石片平行排列微结构的最大拔出能.结果表明,羟基磷灰石片长而薄的形状以及平行排列方式增加了其最大拔出能,进而提高了骨的断裂韧性.  相似文献   

17.
18.
高等教育国际化与中国高等教育施化力培育   总被引:5,自引:2,他引:5  
本文从化层、化型、化向与化力等方面考察高等教育国际化的应然本质属性 ,描述与分析中国高等教育在国际化潮流中表现出的发展态势 ,针对种种态势提出中国高等教育核心施化力培育战略 ,以使中国高等教育乃至世界高等教育真正地走向国际化  相似文献   

19.
This paper describes the general features of the functional methods of electrohydropulse, pulse electrocurrent, and magnetic pulse treatment processes of the melt in order to positively vary its crystallizaton ability.  相似文献   

20.
Conclusion In alloy Fe-42% W atomized with a cooling rate during solidification within the limits from 5·103 to 1·105°C/sec with the maximum cooling rate (not less than 105°C/sec) precipitation of -phase (Fe7W6) from the liquid melt is suppressed. In granules of alloy obtained with a high solidification rate it is possible to achieve total dissolution of tungsten in solid solution (42%). Subsequent heating causes precipitation of -phase in dispersed form.I. P. Bardin Central Scientific-Research Institute of Ferrous Metallurgy (TsNIIChERMET) Moscow. Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 9, pp. 34–36, September, 1990.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号