首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
国外电弧炉烟尘处理技术现状及发展   总被引:4,自引:0,他引:4  
综合介绍了国外电弧炉烟尘处理的主要工艺——威尔兹、转底炉直接还原、ZINCEX、EZINEX及MRT(HST)工艺的发展现状。经综合评价后指出:采用先火法后湿法的联合工艺,可以一次回收电弧炉烟尘中全部的铁与锌等有价金属,并得到优质高纯的产品,是将来的发展方向。  相似文献   

2.
为了促进含锌渣尘中有价金属回收利用技术的发展,对资源量大、富含铁酸锌的钢铁厂电炉粉尘和湿法浸锌渣等2类典型二次锌资源,从综合利用原理、技术路线和利用效果等方面进行了评述。指出了矿相重构是实现电炉粉尘和湿法浸锌渣综合利用的有效方法。电炉粉尘主要有价组分为锌和铁,矿相重构处理后宜采取选矿法分离出锌组分,剩余产物应返回炼铁工序,实现在钢铁厂内循环利用;湿法浸锌渣主要有价组分为锌、铁、镓、铟、银等,矿相重构处理后根据元素走向,采取选矿和湿法提取相结合的方法,在不产生二次污染的前提下,重点实现有价元素的综合回收。  相似文献   

3.
在南方湿润气候区域矿山,破碎车间产生的粉尘具有高湿、高黏性,采用传统湿法收尘技术处理不仅工程投资大、能耗高、运行维护难度大,并且传统湿式收尘技术仅考虑除尘,未能回收有价物料,反而增加二次污染处理成本,造成严重的资源浪费;而传统干式布袋除尘工艺由于存在糊袋现象,难以清灰,不适用于高湿、高黏性粉尘净化处理。针对上述存在的弊端,率先采用干式布袋收尘技术进行高湿、高黏性粉尘的净化处理,突破了传统干式布袋除尘工艺不适用于高湿、高黏性粉尘净化处理的技术瓶颈,研发了新型防水防油滤料,有效解决了高湿、高黏性粉尘糊袋难以清灰的技术难题,采用溜槽及泵送方式实现了除尘器收集粉尘的循环利用,回收了有价金属,不仅减少了二次污染处理成本,而且带来了可观的经济效益,在除尘技术领域实现了新的突破。  相似文献   

4.
从铜渣中回收有价金属技术的研究进展   总被引:7,自引:0,他引:7  
铜渣中含有大量的有价金属,回收有价金属日益受到人们的重视。根据铜渣的物化和矿物学特性,从铜渣中回收有价金属技术在国内外得到了广泛的研究。本文重点介绍了火法、选矿法、湿法和联合工艺法四大类回收技术。通过对它们的优缺点及应用价值的分析,认为联合工艺法将会成为从铜渣中回收有价金属技术的主要研究方向。  相似文献   

5.
对目前国内外含锌电炉粉尘的性质和处理现状进行了分析和总结。电炉粉尘传统处理工艺都有各自的局限性:填埋法处理无法利用电炉粉尘中的有价金属;钢铁厂循环利用对电炉粉尘铅锌含量要求严格,锌的富集对后续炼铁炼钢工序造成危害,并不能大规模利用;湿法处理电炉粉尘能耗小,但流程长,设备腐蚀严重,目前难以得到大规模工业应用;火法处理虽然生产效率高,操作简单,脱锌率高,原料适应性强,但污染大,能耗高,对环境污染严重。新的处理技术如微波法、真空冶金技术、铝浴熔融法虽具有脱锌率高,更环保等优势,但因设备投资大,技术不成熟等原因,目前很难在工业上得到应用。焙烧转化-分离技术具备流程短,操作简单的优势,是未来处理含锌电炉粉尘的发展方向。  相似文献   

6.
白成庆 《矿冶工程》2018,38(3):79-81
某铜冶炼转炉大修拆除的废镁砖经重选回收铜、金、银、铅等有价金属后, 对其尾渣进行了浮选回收有价金属的试验研究。通过优化磨矿细度、浮选矿浆浓度、药剂制度等, 获得了含铜26.96%、含银2 158.0 g/t 、含金6.80 g/t、含铅4.98%的铜精矿, 铜、金、银、铅回收率分别为89.97%、82.12%、89.75%和86.07%, 各种有价金属得到了全面高效地回收, 达到了综合回收的目的。  相似文献   

7.
铁矾渣含有较高的重金属和硫酸盐,是一种具有金属回收价值的危险固体废物。高效回收铁矾渣中有价金属是铁矾渣资源化和无害化的重要方向,但目前使用的湿法、火法、湿法-火法联合法和硫化-浮选法等,其资源化和无害化程度均有限。借鉴硫酸盐还原菌这种矿化微生物对含硫酸盐和重金属废水的无害化处理原理和研究成果,本文提出了微生物矿化-浮选法回收铁矾渣中有价金属的思路以及需解决的关键技术问题,有望成为铁矾渣及类似有色金属冶炼渣中有价金属高效、无害化回收的一种可行方法。  相似文献   

8.
油页岩为煤炭开采过程中的伴生物,油页岩综合利用实现了资源的回收再利用,但在破碎、转载、仓储过程中产生大量的扬尘,通过对油页岩的特性研究和产尘机理分析,提出一套完整的油页岩粉尘治理工艺。  相似文献   

9.
废锂电池有价金属的回收,是当前的一个热点。本文主要介绍了废锂电池的预处理以及回收有价金属的相关工艺的研究情况,如火法冶金、湿法冶金、火法焙烧-湿法冶金联合及生物冶金,为后续工作者从事废锂电池回收提供参考,同时展望了废锂电池回收的前景及方向。  相似文献   

10.
赵德贵  闫常陆  任春勇 《金属矿山》2012,41(10):137-139
气力输送技术对各行业的生产和发展起着不可忽视的作用,对该技术的合理利用意义重大。针对巴润矿业公司破碎区域除尘器的回收粉尘,介绍了气力输送技术的应用流程、运行以及对回收粉尘的利用,对遇到的技术问题进行讨论。实践表明,气力输送方式有效地实现了远距离无二次污染的输送,便于回收粉尘的再利用,创造了收益,并指出了今后的发展方向。  相似文献   

11.
电炉含锌粉尘在微波场下脱锌的试验研究   总被引:5,自引:2,他引:5  
微波能是一种清洁型能源,可以对物料进行选择性体加热。利用电炉含锌粉中和煤粉吸收微波能力强的特点,试验研究了微波加热还原电炉含锌粉尘的脱锌效果。结果表明,在大气条件下,脱锌率可达到80%左右;脱锌率随着配煤最、煤粉粒度和微波功率的增加而提高。  相似文献   

12.
Electric arc furnace (EAF) dust is produced when automobile scrap is remelted in an electric arc furnace and about 10–20 kilograms are generated per ton of steel. The major elements present in the dust are usually zinc, iron and calcium with smaller amounts of numerous other elements such as lead, copper and nickel. Typically, in the pyrometallurgical EAF dust treatment processes, the lead and zinc are separated as a crude zinc oxide while the iron is generally not worth recovering. Copper and nickel are usually not recovered as they report either to the oxide residue or to any metallic iron that is produced. In the present research, the recovery of the non-ferrous metals in a multiphase system consisting of gas, slag, matte, metal and solid carbon phases was investigated. The equilibrium compositions of the various phases, resulting from the smelting of the dust, were calculated using the SOLGASMIX module of Outokumpu HSC Chemistry. The effects of the following operating variables were investigated; carbon additions, sulphur additions, nitrogen and oxygen additions, temperature and dust composition. The thermodynamic modelling results show that the majority of the non-ferrous metals can be recovered, with the zinc and lead concentrating in the gas phase and the nickel and copper concentrating in the matte phase.  相似文献   

13.
酒钢冶炼工序除尘灰高效利用研究   总被引:1,自引:1,他引:0  
在分析酒钢烧结、炼铁、炼钢工序各种除尘灰性质的基础上, 通过对比各种回收工艺的技术经济指标, 推荐了除尘灰的处理工艺, 即采用回转窑焙烧工艺回收锌元素、采用水洗-净化-蒸发浓缩-冷却结晶-干燥工艺回收碱金属元素、返回烧结工序回收利用铁元素, 该处理方案既达到了综合回收有价元素的目的, 又能降低高炉碱负荷、锌负荷, 综合效益显著。  相似文献   

14.
《Minerals Engineering》2006,19(5):478-485
Electric arc furnaces (EAF) generate about 10–20 kg of dust per metric ton of steel, which constitute a hazardous waste, known as EAF dust. This dust contains a remarkable amount of non-ferrous metals, which include zinc, cadmium, lead, chromium and nickel that could be recovered, reducing the environmental impact of the leachable toxic metals, and generating revenue. In this paper, different alkaline leaching techniques were tested in order to dissolve the zinc present in an EAF dust: (i) conventional agitation leaching; (ii) pressure leaching; (iii) conventional leaching following a microwave pretreatment and (iv) leaching with agitation provided by an ultra-sonic probe. Temperature and sodium hydroxide concentration were the variables tested. The highest zinc recovery from the EAF dust, containing about 12% of zinc, was about 74%. This was achieved after 4 h of leaching in a temperature of 90 °C and with a sodium hydroxide concentration of 6 M of the leaching agent.  相似文献   

15.
利用含锌铅电炉粉尘、焦炭、无烟煤和烟煤吸收微波能力强的特点,采用微波加热方法对配碳电炉粉尘进行碳热还原。结果表明,选用粒度为-0.096 mm的无烟煤为还原剂,在碳氧比为0.9、还原温度为1 100 ℃、保温时间为15 min的条件下,还原产物中铁的金属化率可达90.33%,蒸发脱锌率为96.26%,脱铅率为88.89%。  相似文献   

16.
含锌电炉粉尘配碳选择性还原的实验研究   总被引:1,自引:0,他引:1  
为实现含锌电炉粉尘选择性还原、有效分离铁和锌资源,采用热力学计算和实验研究相结合,分析电炉粉尘中主要物相的还原分解行为,研究配碳量、反应温度和反应时间对还原产物的影响。结果表明,含锌电炉粉尘配碳选择性还原为铁氧化物和ZnO是可行的;在582~940 ℃之间,可实现铁酸锌的有效分解、ZnO过还原的抑制;随着反应温度增加和反应时间延长,铁氧化物遵循逐级还原规律,配碳量对产物并未产生明显影响;当温度为950 ℃时,ZnO被还原为锌蒸气而挥发,导致产物中锌含量明显降低。在配碳量1/10、反应温度850 ℃、反应时间1 h的优化条件下,ZnFe2O4分解率约为70%。  相似文献   

17.
《Minerals Engineering》2000,13(1):79-94
Electric arc furnace (EAF) dust is a waste product which is generated when steel scrap is melted in an electric arc furnace. It contains high concentrations of iron, zinc and lead. Numerous pyrometallurgical and hydrometallurgical processes have been developed to treat this material. Only a limited number of these have reached commercialization and the majority have been pyrometallurgical. However, the hydrometallurgical processes, such as caustic leaching, offer some potential advantages.In the present research, the application of microwave radiation at 2.45 GHz was employed, as the energy source, in the hydrometallurgical caustic leaching process for EAF dust treatment. The variables which were investigated were: leaching time, microwave power, caustic concentration and the solid to liquid ratio. The experimental results showed that the zinc recovery from the dust increased with a decrease in the solid to liquid ratio and an increase in the microwave power. The optimum caustic concentration for the maximum zinc recovery was 8M. The rates of zinc recovery were significantly higher under microwave conditions as compared to those observed with conventional leaching. Some possible mechanisms to explain this behaviour are discussed.  相似文献   

18.
《Minerals Engineering》2007,20(3):211-220
Cadmium is a toxic metal, which is primarily produced as a by-product from mining, smelting and refining of sulphide ore concentrates of zinc. Secondary cadmium is recovered from spent Ni–Cd batteries. Some cadmium is also recovered from zinc sinter plant fume, EAF dust, cadmium containing alloys, cadmium containing fluorescent materials, etc. In all cases cadmium is associated with some other impurities depending on the source. The hydrometallurgical processing is very effective for treating such materials because it can control the different levels of impurities. The most common lixiviant used to dissolve the desired metals is sulphuric acid. In the present paper, the hydrometallurgical processes have been described for the recovery of cadmium from various resources using sulphuric acid as the main lixiviant. The leach solution obtained has been purified using cementation or solvent extraction methods. The metal is then produced from the purified solution by electrowinning or precipitation with zinc dust and melting.  相似文献   

19.
王开力  傅杰 《矿冶》1996,5(3):61-71,66
将麦克斯韦方程组转换为电磁场传输方程,并建立了三维电磁场数学模型。计算50t直流电弧炉30kA下的磁场强度和电流密度,并实测其磁场强度分布,计算值和实测结果相吻合。电磁场模型为直流电弧炉熔体流动和传热数学模型奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号