首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Generation of a wide variety of nucleoside (and deoxynucleoside) triphosphates (NTPs) from their cognate nucleoside diphosphates (NDPs) is of critical importance in virtually every aspect of cellular life. Their function is fulfilled largely by the ubiquitous and potent nucleoside diphosphate kinase (NDK), most commonly using ATP as the donor. Considerable interest is attached to the consequence to a cell in which the NDK activity becomes deficient or over-abundant. We have discovered an additional and possibly auxiliary NDK-like activity in the capacity of polyphosphate kinase (PPK) to use inorganic polyphosphate as the donor in place of ATP, thereby converting GDP and other NDPs to NTPs. This reaction was observed with the PPK activity present in crude membrane fractions from Escherichia coli and Pseudomonas aeruginosa as well as with the purified PPK from E. coli; the activity was absent from the membrane fractions obtained from E. coli mutants lacking the ppk gene. The order of substrate specificity for PPK was: ADP > GDP > UDP, CDP; activity with ADP was 2-60 times greater than with GDP, depending on the reaction condition. Although the transfer of a phosphate from polyphosphate to GDP by PPK to produce GTP was the predominant reaction, the enzyme also transferred a pyrophosphate group to GDP to form the linear guanosine 5' tetraphosphate.  相似文献   

2.
Two succinyl-CoA synthetases, one highly specific for GTP/GDP and the other for ATP/ADP, have been purified to homogeneity from pigeon liver and breast muscle. The two enzymes are differentially distributed in pigeon, with only the GTP-specific enzyme detected in liver and the ATP-specific enzyme in breast muscle. Based on assays in the direction of CoA formation, the ratios of GTP-specific to ATP-specific activities in kidney, brain, and heart are approximately 7, 1, and 0.1, respectively. Both enzymes have the characteristic alpha- and beta-subunits found in other succinyl-CoA synthetases. Studies of the alpha-subunit by electrophoresis, mass spectrometry, reversed-phase high performance liquid chromatography, and peptide mapping showed that it was the same in the two enzymes. Characterization of the beta-subunits by the same methods indicated that they were different, with the tryptic peptide maps providing evidence that the beta-subunits likely differ along their entire sequences. Because the two succinyl-CoA synthetases incorporate the same alpha-subunit, the determinants of nucleotide specificity must reside within the beta-subunit. Determination of the apparent Michaelis constants showed that the affinity of the GTP-specific enzyme for GDP is greater than that of the ATP-specific enzyme for ADP (7 versus 250 microM). Rather large differences in apparent Km values were also observed for succinate and phosphate.  相似文献   

3.
Succinyl-CoA synthetase (SCS) carries out the substrate-level phosphorylation of GDP or ADP in the citric acid cycle. A molecular model of the enzyme from Escherichia coli, crystallized in the presence of CoA, has been refined against data collected to 2.3 A resolution. The crystals are of space group P4322, having unit cell dimensions a=b=98.68 A, c=403.76 A and the data set includes the data measured from 23 crystals. E. coli SCS is an (alphabeta)2-tetramer; there are two copies of each subunit in the asymmetric unit of the crystals. The crystal packing leaves two choices for which pair of alphabeta-dimers form the physiologically relevant tetramer. The copies of the alphabeta-dimer are similar, each having one active site where the phosphorylated histidine residue and the thiol group of CoA are found. CoA is bound in an extended conformation to the nucleotide-binding motif in the N-terminal domain of the alpha-subunit. The phosphoryl group of the phosphorylated histidine residue is positioned at the amino termini of two alpha-helices, one from the C-terminal domain of the alpha-subunit and the other from the C-terminal domain of the beta-subunit. These two domains have similar topologies, despite only 14 % sequence identity. By analogy to other nucleotide-binding proteins, the binding site for the nucleotide may reside in the N-terminal domain of the beta-subunit. If this is so, the catalytic histidine residue would have to move about 35 A to react with the nucleotide.  相似文献   

4.
Time-resolved measurements of currents generated by Ca-ATPase from fragmented sarcoplasmic reticulum (SR) are described. SR vesicles spontaneously adsorb to a black lipid membrane acting as a capacitive electrode. Charge translocation by the enzyme is initiated by an ATP concentration jump performed by the light-induced conversion of an inactive precursor (caged ATP) to ATP with a time constant of 2.0 ms at pH 6.2 and 24 degrees C. The shape of the current signal is triphasic, an initial current flow into the vesicle lumen is followed by an outward current and a second slow inward current. The time course of the current signal can be described by five relaxation rate constants, lambda1 to lambda5 plus a fixed delay D approximately 1-3 ms. The electrical signal shows that 1) the reaction cycle of the Ca-ATPase contains two electrogenic steps; 2) positive charge is moved toward the luminal side in the first rapid step and toward the cytoplasmic side in the second slow step; 3) at least one electroneutral reaction precedes the electrogenic steps. Relaxation rate constant lambda3 reflects ATP binding, with lambda(3,max) approximately 100 s(-1). This step is electroneutral. Comparison with the kinetics of the reaction cycle shows that the first electrogenic step (inward current) occurs before the decay of E2P. Candidates are the formation of phosphoenzyme from E1ATP (lambda2 approximately 200 s[-1]) and the E1P --> E2P transition (D approximately 1 ms or lambda1 approximately 300 s[-1]). The second electrogenic transition (outward current) follows the formation of E2P (lambda4 approximately 3 s[-1]) and is tentatively assigned to H+ countertransport after the dissociation of Ca2+. Quenched flow experiments performed under the conditions of the electrical measurements 1) demonstrate competition by caged ATP for ATP-dependent phosphoenzyme formation and 2) yield a rate constant for phosphoenzyme formation of 200 s(-1). These results indicate that ATP and caged ATP compete for the substrate binding site, as suggested by the ATP dependence of lambda3 and favor correlation of lambda2 with phosphoenzyme formation.  相似文献   

5.
Succinyl-CoA ligase (succinyl-CoA synthetase) catalyzes the nucleotide-dependent conversion of succinyl-CoA to succinate. This enzyme functions in the tricarboxylic acid (TCA) cycle and is also involved in ketone-body breakdown in animals. The enzyme is composed of alpha and beta subunits that are required for catalytic activity. Two genes, LSC1 (YOR142W) and LSC2 (YGR244C), with high similarity to succinyl-CoA ligase subunits from other species were isolated from Saccharomyces cerevisiae. The expression of these genes was repressed by growth on glucose and was induced threefold to sixfold during growth on nonfermentable carbon sources. The LSC genes were deleted singly and in combination. Unlike other yeast strains with defects in TCA cycle genes, strains lacking either or both LSC genes were able to grow with acetate as a carbon source. However, growth on glycerol or pyruvate was impaired. An antiserum against both subunits of the Escherichia coli enzyme was capable of recognizing the yeast succinyl-CoA ligase alpha subunit, and this band was absent in delta lsc1 deletion strains. Succinyl-CoA ligase activity was absent in mitochondria isolated from strains deleted for one or both LSC genes, but activity was restored by the presence of the appropriate LSC gene on a plasmid. The yeast succinyl-CoA ligase was shown to utilize ATP but not GTP for succinyl-CoA synthesis.  相似文献   

6.
During kinetic studies of mutant rat Na,K-ATPases, we identified a spontaneous mutation in the first cytoplasmic loop between transmembrane helices 2 and 3 (H2-H3 loop) which results in a functional enzyme with distinct Na,K-ATPase kinetics. The mutant cDNA contained a single G950 to A substitution, which resulted in the replacement of glutamate at 233 with a lysine (E233K). E233K and alpha1 cDNAs were transfected into HeLa cells and their kinetic behavior was compared. Transport studies carried out under physiological conditions with intact cells indicate that the E233K mutant and alpha1 have similar apparent affinities for cytoplasmic Na+ and extracellular K+. In contrast, distinct kinetic properties are observed when ATPase activity is assayed under conditions (low ATP concentration) in which the K+ deocclusion pathway of the reaction is rate-limiting. At 1 microM ATP K+ inhibits Na+-ATPase of alpha1, but activates Na+-ATPase of E233K. This distinctive behavior of E233K is due to its faster rate of formation of dephosphoenzyme (E1) from K+-occluded enzyme (E2(K)), as well as 6-fold higher affinity for ATP at the low affinity ATP binding site. A lower ratio of Vmax to maximal level of phosphoenzyme indicates that E233K has a lower catalytic turnover than alpha1. These distinct kinetics of E233K suggest a shift in its E1/E2 conformational equilibrium toward E1. Furthermore, the importance of the H2-H3 loop in coupling conformational changes to ATP hydrolysis is underscored by a marked (2 orders of magnitude) reduction in vanadate sensitivity effected by this Glu233 --> Lys mutation.  相似文献   

7.
By equilibrium dialysis of cytochrome c oxidase from bovine heart with [35S]ATPalphaS and [35S]ADPalphaS, seven binding sites for ATP and ten for ADP were determined per monomer of the isolated enzyme. The binding of ATP occurs in a time-dependent manner, as shown by a filtration method, which is apparently due to slow exchange of bound cholate. In the crystallized enzyme 10 mol of cholate were determined and partly identified in the high resolution crystal structure. Binding of ADP leads to conformational changes of the Tween 20-solubilized enzyme, as shown by a 12% decrease of the gamma-band. The conformational change is specific for ADP, since CDP, GDP and UDP showed no effects. The spectral changes are not obtained with the dodecylmaltoside solubilized enzyme. The polarographically measured activity of cytochrome c oxidase is lower after preincubation with high ATP/ADP-ratios than with low, in the presence of Tween 20. This effect of nucleotides is due to interaction with subunit IV, because preincubation of the enzyme with a monoclonal antibody to subunit IV released the inhibition by ATP. In the presence of dodecylmaltoside the enzyme had a 2 to 3-fold higher total activity, but this activity was not influenced by preincubation with ATP or ADP.  相似文献   

8.
In this investigation the effects of alkali cations on the transient kinetics of Na,K-ATPase phosphoenzyme formation from either ATP (E2P) or Pi (E'2P) were characterized by chemical quench methods as well as by stopped-flow RH421 fluorescence experiments. By combining the two methods it was possible to characterize the kinetics of Na, K-ATPase from two sources, shark rectal glands and pig kidney. The rate of the spontaneous dephosphorylation of E2P and E'2P was identical with a rate constant of about 1.1 s-1 at 20 degreesC. However, whereas dephosphorylation of E2P formed from ATP was strongly stimulated by K+, dephosphorylation of E'2P formed from Pi in the absence of alkali cations was K+-insensitive, although in pig renal enzyme K+ binding to E'2P could be demonstrated with RH421 fluorescence. It appears, therefore, that in pig kidney enzyme the rapid binding of K+ to E'2P was followed by a slow transition to a nonfluorescent form. For shark enzyme the K+-induced decrease of RH421 fluorescence of Pi phosphorylated enzyme was due to K+ binding to the dephosphoenzyme (E1), thus shifting the equilibrium away from E'2P. When Pi phosphorylation was performed with enzyme equilibrated with K+ or its congeners Tl+, Rb+, and Cs+ but not with Na+ or Li+, both the phosphorylation and the dephosphorylation rates were considerably increased. This indicates that binding of cations modifies the substrate site in a cation-specific way, suggesting an allosteric interaction between the conformation of the cation-binding sites and the phosphorylation site of the enzyme.  相似文献   

9.
10.
11.
Conditions that permit the selective modification of an ATP-protectable site on the Ca-ATPase in skeletal sarcoplasmic reticulum (SR) membranes using erythrosin isothiocyanate (Er-ITC) have been identified. The major labeling site for Er-ITC has been identified using reversed-phase HPLC and positive FAB mass spectrometry after exhaustive tryptic digestion of the Er-ITC-modified Ca-ATPase. An ATP-protectable peptide corresponding to M452NVFNTEVRNLSK464VER467 is modified by Er-ITC, the average mass of which is 2830.1 +/- 0.3 Da. The exclusive modification of lysine residues indicates Lys464 as the site of Er-ITC modification. Derivatization with Er-ITC diminishes the secondary activation of steady-state ATPase activity and the rate of dephosphorylation by millimolar concentrations of ATP. In contrast, in the presence of micromolar ATP concentrations Er-ITC modification of the Ca-ATPase does not affect (i) the apparent affinity of ATP, (ii) the maximal extent of phosphoenzyme formation by ATP, (iii) the rate of steady-state ATP hydrolysis, or (iv) the rate of dephosphorylation of the Ca-ATPase. Furthermore, ATP utilization by the Ca-ATPase is unaffected by detergent solubilization, irrespective of Er-ITC modification, indicating that the secondary activation of ATP hydrolysis involves a single Ca-ATPase polypeptide chain. Therefore, Er-ITC does not interfere with the normal structural transitions associated with phosphoenzyme decay. Rather, these results indicate that Er-ITC bound to Lys464 interferes with either ATP binding to a low-affinity site or the associated structural transitions that modulate the rate of enzyme dephosphorylation.  相似文献   

12.
CMP kinases from Bacillus subtilis and from Escherichia coli are encoded by the cmk gene (formerly known as jofC in B. subtilis and as mssA in E. coli). Similar in their primary structure (43% identity and 67% similarity in amino acid sequence), the two proteins exhibit significant differences in nucleotide binding and catalysis. ATP, dATP, and GTP are equally effective as phosphate donors with E. coli CMP kinase whereas GTP is a poor substrate with B. subtilis CMP kinase. While CMP and dCMP are the best phosphate acceptors of both CMP kinases, the specific activity with these substrates and ATP as donor are 7- to 10-fold higher in the E. coli enzyme; the relative Vm values with UMP and CMP are 0.1 for the B. subtilis CMP kinase and 0.01 for the E. coli enzyme. CMP increased the affinity of E. coli CMP kinase for ATP or for the fluorescent analog 3'-anthraniloyl dATP by one order of magnitude but had no effect on the B. subtilis enzyme. The differences in the catalytic properties of B. subtilis and E. coli CMP kinases might be reflected in the structure of the two proteins as inferred from infrared spectroscopy. Whereas the spectrum of B. subtilis CMP kinase is dominated by a band at 1633 cm-1 (representing beta type structures), the spectrum of the E. coli enzyme is dominated by two bands at 1653 and 1642 cm-1 associated with alpha-helical and unordered structures, respectively. CMP induced similar spectral changes in both proteins with a rearrangement of some of the beta-structures. ATP increases the denaturation temperature of B. subtilis CMP kinase by 9.3 degrees C, whereas in the case of the E. coli enzyme, binding of ATP has only a minor effect.  相似文献   

13.
INTRODUCTION: The tripeptide glutathione is converted to glutathionylspermidine (Gsp) in Escherichia coli and in trypanosomatid parasites by an ATP-cleaving Gsp synthetase activity. In parasites, an additional glutathionylation forms bis-(glutathionyl)-spermidine, trypanothione, believed to be the major surveillance thiol involved in oxidant defense mechanisms in trypanosomatid parasites. In E. coli, the Gsp synthetase is part of a bifunctional enzyme opposed by the hydrolytic Gsp amidase. RESULTS: Gsp amidase and Gsp synthetase activities of the bifunctional E. coli enzyme can be separately targeted by potent, selective slow-binding inhibitors that induce time-dependent inhibition. The inhibitor gamma-Glu-Ala-Gly.CHO most probably captures Cys59 and accumulates as the tetrahedral adduct in the amidase active site. Inhibitory Gsp phosphinate analogs are phosphorylated by ATP to yield phosphinophosphate analogs in the synthetase active site. Binding of phosphinophosphate in the Gsp synthetase active site potentiates the inhibition affinity for the aldehyde at the Gsp amidase active site by two orders of magnitude. CONCLUSIONS: Time-dependent inhibition of the Gsp amidase activity by the aldehyde substrate analog supports previous work that suggests glutathionyl acyl-enzyme intermediate formation in the Gsp amidase reaction mechanism. Use of potent selective inhibitors against Gsp amidase (aldehyde) and Gsp synthetase (phosphinate) activities provides further evidence of interdomain communication in the bifunctional enzyme from E. coli.  相似文献   

14.
Time-resolved infrared difference spectra of the ATP-induced phosphorylation of the sarcoplasmic reticulum Ca2+-ATPase have been recorded in H2O and 2H2O at pH 7.0 and 1 degrees C. The reaction was induced by ATP release from P3-1-(2-nitro)phenylethyladenosine 5'-triphosphate (caged ATP) and from [gamma-18O3]caged ATP. A band at 1546 cm-1, not observed with the deuterated enzyme, can be assigned to the amide II mode of the protein backbone and indicates that a conformational change associated with ATPase phosphorylation takes place after ATP binding. This is also indicated between 1700 and 1610 cm-1, where bandshifts of up to 10 cm-1 observed upon protein deuteration suggest that amide I modes of the protein backbone dominate the difference spectrum. From the band positions it is deduced that alpha-helical, beta-sheet, and probably beta-turn structures are affected in the phosphorylation reaction. Model spectra of acetyl phosphate, acetate, ATP, and ADP suggest the tentative assignment of some of the bands of the phosphorylation spectrum to the molecular groups of ATP and Asp351, which participate directly in the phosphate transfer reaction: a positive band at 1719 cm-1 to the C==O group of aspartyl phosphate, a negative band at 1239 cm-1 to the nuas(PO2-) modes of the bound ATP molecule, and a positive band at 1131 cm-1 to the nuas(PO32-) mode of the phosphoenzyme phosphate group, the latter assignment being supported by the band's sensitivity toward isotopic substitution in the gamma-phosphate of ATP. Band positions and shapes of these bands indicate that the alpha- and/or beta-phosphate(s) of the bound ATP molecule become partly dehydrated when ATP binds to the ATPase, that the phosphoenzyme phosphate group is unprotonated at pH 7.0, and that the C==O group of aspartyl phosphate does not interact with bulk water. The Ca2+ binding sites seem to be largely undisturbed by the phosphorylation reaction, and a functional role of the side chains of Asn, Gln, and Arg residues was not detected.  相似文献   

15.
The interactions of nucleotides and their role in the polymerization of tubulin have been studied in detail. GTP promotes polymerization by binding to the exchangeable site (E site) of tubulin. The microtubules formed contain only GDP at the E site, indicating that hydrolysis of E site GTP occurs during or shortly after polymerization. Tubulin prepared by several cycles of polymerization and depolymerization will polymerize in the presence of ATP as well as GTP. Polymerization in ATP is preceded by a distinct lag period which is shorter at higher concentrations of ATP. As reported by others ATP will transphosphorylate bound GDP to GTP. Under polymerizing conditions the maximum level of GTP formation occurs at about the same time as the onset of polymerization, and the lag probably reflects the time necessary to transphosphorylate a critical concentration of tubulin. The transphosphorylated protein can be isolated and will polymerize without further addition of nucleotide. The transphosphorylated GTP is hydrolyzed and the phosphate released during polymerization. About 25% of the phosphate transferred from ATP is noncovalently bound to the subunit as inorganic phosphate and this fraction is also released during polymerization. The nonhydrolyzable analogue of GTP, GMPPNP, will promote microtubule assembly at high concentration. GMPPNP assembled microtubules do not depolymerize in Ca concentrations several fold greater than that which will completely depolymerize GTP assembled tubules; however, addition of Ca prior to inducing polymerization in GMPPNP prevents the formation of microtubules. Thus GTP hydrolysis appears to promote depolymerization rather than polymerization. GDP does not promote microtubule assembly but can inhibit GTP binding and GTP induced polymerization. GDP does not, however, induce the depolymerization of formed microtubules. These experiments demonstrate that tubulin polymerization can not be treated as a thermodynamically reversible process, but must involve one or more irreversible steps. Exchange experiments with [3H]GTP indicate that the "E" site on both microtubules and ring aggregates of tubulin is blocked and does not exchange rapidly. However, during polymerization and depolymerization induced by raising or lowering the temperature, respectively, all the E sites become transiently available and will exchange their nucleotide. This observation does not suggest a direct morphological transition between rings and microtubules. The presence of a blocked E site on the rings explains the apparent transphosphorylation and hydrolysis of "N" site nucleotide reported by others.  相似文献   

16.
The binding of TNP-ATP (2' or 3'-O-(2,4,6-trinitrophenyl)-ATP) to cytochrome c oxidase (COX) from bovine heart and liver and to the two-subunit COX of Paracoccus denitrificans was measured by its change of fluorescence. Three binding sites, two with high (dissociation constant Kd = 0.2 microM) and one with lower affinity (Kd = 0.9 microM), were found at COX from bovine heart and liver, while the Paracoccus enzyme showed only one binding site (Kd = 3.6 microM). The binding of [35S]ATP alpha S was measured by equilibrium dialysis and revealed seven binding sites at the heart enzyme (Kd = 7.5 microM) and six at the liver enzyme (Kd = 12 microM). The Paracoccus enzyme had only one binding site (Kd = 16 microM). The effect of variable intraliposomal ATP/ADP ratios, but at constant total concentration of [ATP + ADP] = 5 mM, on the H+/e- stoichiometry of reconstituted COX from bovine heart and liver were studied. Above 98% ATP the H+/e- stoichiometry of the heart enzyme decreased to about half of the value measured at 100% ATP. In contrast, the H+/e-stoichiometry of the liver enzyme was not influenced by the ATP/ADP ratio. It is suggested that high intramitochondrial ATP/ADP ratios, corresponding to low cellular work load, will decrease the efficiency of energy transduction and result in elevated thermogenesis for the maintenance of body temperature.  相似文献   

17.
The physiological ligands for Na,K-ATPase (the Na,K-pump) are ions, and electrostatic forces, that could be revealed by their ionic strength dependence, are therefore expected to be important for their reaction with the enzyme. We found that the affinities for ADP3-, eosine2-, p-nitrophenylphosphate, and V(max) for Na,K-ATPase and K+-activated p-nitrophenylphosphatase activity, were all decreased by increasing salt concentration and by specific anions. Equilibrium binding of ADP was measured at 0-0.5 M of NaCl, Na2SO4, and NaNO3 and in 0.1 M Na-acetate, NaSCN, and NaClO4. The apparent affinity for ADP decreased up to 30 times. At equal ionic strength, I, the ranking of the salt effect was NaCl approximately Na2SO4 approximately Na-acetate < NaNO3 < NaSCN < NaCl04. We treated the influence of NaCl and Na2SO4 on K(diss) for E x ADP as a "pure" ionic strength effect. It is quantitatively simulated by a model where the binding site and ADP are point charges, and where their activity coefficients are related to I by the limiting law of Debye and Hückel. The estimated net charge at the binding site of the enzyme was about +1. Eosin binding followed the same model. The NO3- effect was compatible with competitive binding of NO3- and ADP in addition to the general I-effect. K(diss) for E x NO3 was approximately 32 mM. Analysis of V(max)/K(m) for Na,K-ATPase and K+-p-nitrophenylphosphatase activity shows that electrostatic forces are important for the binding of p-nitrophenylphosphate but not for the catalytic effect of ATP on the low affinity site. The net charge at the p-nitrophenylphosphate-binding site was also about +1. The results reported here indicate that the reversible interactions between ions and Na,K-ATPase can be grouped according to either simple Debye-Hückel behavior or to specific anion or cation interactions with the enzyme.  相似文献   

18.
Selenophosphate synthetase, the Escherichia coli selD gene product, is a 37-kDa protein that catalyzes the synthesis of selenophosphate from ATP and selenide. In the absence of selenide, ATP is converted quantitatively to AMP and two orthophosphates in a very slow partial reaction. A monophosphorylated enzyme derivative containing the gamma-phosphoryl group of ATP has been implicated as an intermediate from the results of positional isotope exchange studies. Conservation of the phosphate bond energy in the final selenophosphate product is indicated by its ability to phosphorylate alcohols and amines to form O-phosphoryl- and N-phosphoryl-derivatives. To further probe the mechanism of action of selenophosphate synthetase, isotope exchange studies with [8-14C]ADP or [8-14C]AMP and unlabeled ATP were carried out, and 31P NMR analysis of reaction mixtures enriched in H218O was performed. A slow enzyme-catalyzed exchange of ADP with ATP observed in the absence of selenide implies the existence of a phosphorylated enzyme and further supports an intermediary role of ADP in the reaction. Under these conditions ADP is slowly converted to AMP. Incorporation of 18O from H218O exclusively into orthophosphate in the overall selenide-dependent reaction indicates that the beta-phosphoryl group of the enzyme-bound ADP is attacked by water with liberation of orthophosphate and formation of AMP. Based on these results and the failure of the enzyme to catalyze an exchange of labeled AMP with ATP, the existence of a pyrophosphorylated enzyme intermediate that was postulated earlier can be excluded.  相似文献   

19.
ATP sulfurylase, isolated from Escherichia coli K-12, is a GTPase-target complex that catalyzes and links the energetics of GTP hydrolysis to the synthesis of activated sulfate (APS). When the GTP concentration is saturating and held fixed with a regenerating system, the APS reaction reaches a steady state in which its mass ratio is shifted (5.4 x 10(6))-fold toward the product by the hydrolysis of GTP. If GTP is not regenerated, the shift toward the product is transient, producing a pulse-shaped progress curve. The mechanistic basis of this transience is the subject of this paper. The product transient is caused by the binding of GDP to the enzyme which establishes a catalytic pathway that allows the chemical potential that had been transferred to the APS reaction to "leak" into the chemical milieu. The system leaks because the E.GDP complex catalyzes the uncoupled APS reaction. The addition of phosphate to the leaky GDP.E.APS.PPi complex converts it into the central Pi.GDP.E.APS.PPi complex which catalyzes the energy-transfer reaction. Thus, Pi binding directs the system through the coupled mechanism, "plugging" the leak. GMPPNP, which also causes a leak, is used to demonstrate that the mass ratio of the APS reaction can be "tuned" by adjusting flux through the coupled and uncoupled pathways. This energy-coupling mechanism provides a means for controlling the quantity of chemical potential transferred to the APS reaction. This versatile linkage might well be used to the cell's advantage to avoid the toxicity associated with an excess of activated sulfate.  相似文献   

20.
Highly conserved charge-pair networks in the mitochondrial carrier family   总被引:1,自引:0,他引:1  
Selection for regain-of-function mutations in the yeast ADP/ATP carrier AAC2 has revealed an unexpected series of charge-pairs. Four of the six amino acids involved are found in the mitochondrial energy transfer motifs used to define this family of proteins. As such, the results found with the ADP/ATP carrier may apply to the family as a whole. Mitochondrial carriers are built from three homologous domains, each with the conserved motif PX(D,E)XX(K,R). Neutralization of the conserved positive charges at K48, R152 or R252 in these motifs results in respiration defective yeast. Neutralization of the negative charges at D149 and D249 also make respiration defective yeast, though E45G or E45Q mutants are able to grow on glycerol. Regain of function occurs when a complementary charge is lost from another site in the molecule. This phenomenon has been observed independently eight times and thus is strong evidence for charge-pairs existing between the affected residues. Five different charge-pairs have been detected in the yeast AAC2 by this method and three more can be predicted based on homology between the domains. The highly conserved charge-pairs occurring within or between the three mitochondrial energy transfer signatures seem to be a critical feature of mitochondrial carrier structure, independent of the substrates transported. Conformational switching between alternative charge-pairs may constitute part of the basis for transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号