首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
基于介电泳的电极阵列电场仿真研究   总被引:1,自引:0,他引:1  
介电泳方法被广泛地应用于微纳颗粒的分离和操纵中,实现介电泳操作的关键是设计满足所需电场分布的电极阵列.针对目前在微电极阵列设计中尚缺乏简单有效的电场解析方法的现状,提出一种基于格林公式的电极阵列电场的解析方法.首先介绍了传统介电泳和行波介电泳的概念和计算模型,分析了介电泳过程与电极上所施加的交变电压的频率和幅度的关系,然后在确立电极电势的边界条件的基础上,采用基于格林公式的电场解析方法,建立了非均匀电场的解析模型,得出不同条件下的电极阵列电场分布的仿真结果,最后利用FEMLAB有限元仿真软件对解析模型进行了对比仿真, 验证了该解析模型的可行性.基于格林公式的电场解析求解方法能够有效地提高电极阵列设计中的针对性以及缩短电极设计的时间.  相似文献   

2.
This study presents a particle manipulation and separation technique based on dielectrophoresis principle by employing an array of isosceles triangular microelectrodes on the bottom plate and a continuous electrode on the top plate. These electrodes generate non-uniform electric fields transversely across the microchannel. The particles within the flowing fluid experience a dielectrophoretic force perpendicular to the fluid flow direction due to the non-uniform electric fields. The isosceles triangular microelectrodes were designed to continuously exert a small dielectrophoretic force on the particles. Particles experiencing a larger dielectrophoretic force would move further in the perpendicular direction to the fluid flow as they traveled past each microelectrode. Polystyrene microspheres were used as the model particles, with particles of ∅20 μm employed for studying the basic characteristics of this technique. Particle separation was subsequently demonstrated on ∅10 and ∅15 μm microspheres. Using an applied sinusoidal voltage of 20 Vpp and frequency of 1 MHz, a mean separation distance of 0.765 mm between them was achieved at a flow rate of 3 μl/min (~1 mm/s), an important consideration for high throughput separation capability in a micro-scale technology device. This unique isosceles triangular microelectrodes design allows heterogeneous particle populations to be separated into multiple streams in a single continuous operation.  相似文献   

3.
Electrokinetics manipulation and separation of living cells employing microfluidic devices require good knowledge of the strength and distribution of electric field in such devices. AC dielectrophoresis is performed by generating non-uniform electric field using microsize electrodes. Among the several applications of dielectrophoretic phenomenon, this present study considers the recently introduced phenomenon of moving dielectrophoresis. An analytical solution using Fourier series is presented for the electric field distribution and dielectrophoretic force generated inside a microchannel. The potential at the upper part of the microchannel has been found by solving the governing equation of the electric potential with specific boundary conditions. The solutions for the electric field and dielectrophoretic force show excellent agreement with the numerical results. Microdevices were fabricated and experiments were carried out with living cells confirming and validating the analytical solutions.  相似文献   

4.
Microscale bioparticle analysis has advanced significantly providing advantages over bench-scale studies such as the use of a reduced amount of sample and reagents, higher sensitivity, faster response, and portability. Insulator-based dielectrophoresis (iDEP) is a microscale technique where particles are driven by polarization effects under a non-uniform electrical field created by the inclusion of insulators between two electrodes. iDEP possesses attractive advantages over traditional electrode-based dielectrophoresis since there is no electrode degradation and manufacture of the device is simpler and economical. This novel and powerful technique has been applied successfully in the manipulation of macromolecules and cells. In this study, differences in dielectric properties (cell membrane conductivity) of viable and non-viable microalgae, Selenastrum capricornutum, were employed to concentrate and separate a mixture of live and dead cells. A microchannel, manufactured in glass and containing an array of cylindrical insulating posts, was employed to dielectrophoretically immobilize and concentrate the mixture of cells employing direct current electric fields. Experiments showed that live cells exhibited a stronger dielectrophoretic response than dead cells, which allowed cell differentiation. Separation and enrichment of viable and non-viable microalgae was achieved in 35 s with a concentration yield of 10.36 and 15.87 times the initial cell concentration, respectively. These results demonstrate the use of iDEP as a technique for rapid assessment of microalgae viability; unveiling the potential of this powerful technique for environmental applications on lab-on-a-chip platforms.  相似文献   

5.
This paper reports on cell and microparticle manipulation using optically induced dielectrophoresis. Our novel optoelectronic tweezers (OET) device enables optically controlled trapping, transportation, and sorting via dielectrophoretic forces. By integrating a spatial light modulator and using direct imaging, arbitrary dynamic manipulation patterns are obtained. Here, we demonstrate manipulation functions, including particle collectors, single-particle traps, individually addressable single-particle arrays, light-defined particle channels, and size-based particle sorting. OET-induced particle manipulation velocities are analyzed as a function of the applied voltage, optical pattern linewidth, and single-particle trap dimensions.  相似文献   

6.
In this study, we present a microdevice coated with titanium dioxide for cells and particles separation and handling. The microsystem consists of a pair of planar interdigitated gold micro-electrode arrays on a quartz substrate able to generate a traveling electric completed with a microfabricated three-dimensional glass structure for cell confinement. Dielectrophoretic forces were exploited for both vertical and lateral cell motions. In order to provide a biocompatible passivation layer to the electrodes a highly biocompatible nanostructured titanium dioxide film was deposited by supersonic cluster beam deposition (SCBD) on the electrode array. The dielectrophoretic effects of the chip were initially tested using polystyrene beads. To test the biocompatibility and capability of dielectrophoretic cell movement of the device, four cell lines (NIH3T3, SH-SY5Y, MDCK, and PC12) were used. Separation of beads from SH-SY5Y cells was also obtained.  相似文献   

7.
ZnO nanomaterial with multi-microstructures is synthesized by using normal pressure thermal evaporation and then doped with different Al2O3 contents by grinding in an agate mortar. The as-prepared Al-doped ZnO nanomaterials are characterized by X-ray diffraction and scanning electron microscopy. The characterization results show that all the compounds are wurtzite with hexagonal structure and are well crystallized. Channels/connecting holes arising from many kinds of ZnO microstructures are abundant. Both annealing and Al2O3-doping contributes to an increase in the quasi-one-dimensional and tri-dimensional microstructures. The as-prepared Al-doped ZnO nanomaterials show excellent gas responses to ethanol. The sensing mechanism of the ZnO-based nanomaterials with multi-microstructures is further analyzed by using the Effective Specific Surface Model. Excellent sensitivity (200) companied with short response time (8 s) and recovery time (10 s) to 3000 ppm ethanol is obtained with a ZnO-based sensor with 2 at.% Al2O3 at the operating temperature of 290 °C after the sensor is annealed at 500 °C.  相似文献   

8.
We present the simulation, development and experimental validation of a μ-concentrator based on dielectrophoresis, DEP.In a first step dielectrophoretic force fields of various electrodes are computed and compared. The simulation results for various electrode dimensions may serve as a general design rule for DEP devices. Favorable electrode designs were realized in gold on glass substrates. The performance of the DEP chips is validated by concentration of E.-Coli bacteria, a separation efficiency of 99.93% was achieved. Furthermore, we outline how the combination of forced convection and DEP allows for bacteria separation at increased flow rates.  相似文献   

9.
设计并制造了一种带有惯性聚焦结构的介电泳微流控芯片,以实现不同介电性质的粒子连续分离.采用MEMS工艺制作了介电泳微流控芯片:通道入口侧壁设置一对梯形结构使经过的粒子受惯性升力的作用聚焦到通道两侧;通道底部光刻一组夹角为90°的倾斜叉指电极产生非均匀电场,利用介电泳力和流体曳力的合力使通道两侧不同的粒子发生角度不同的偏转进入不同通道,从而实现分离.将酵母菌细胞和聚苯乙烯小球作为实验样本,分析了流速和交流电压对分离的影响,确定了二者分离的最优条件并进行分离.实验结果表明,将电导率为20μS/cm的样本溶液以5μL/min的流速注入到通道中,施加6 Vp-p、10 kHz的正弦信号,酵母菌细胞沿电极运动至夹角处后沿通道中心排出,聚苯乙烯小球沿通道两侧排出,成功实现分离,平均分离效率达92.8%、平均分离纯度达90.7%.  相似文献   

10.
Microfabricated systems have recently become useful for routing particles to precise locations in microfluidic channels. In this paper we discuss the modeling, fabrication and characterization of such a platform that combines acoustic forces and ac dielectrophoresis (DEP). This system integrates a bulk lead zirconate titanate (PZT) slab with substrate patterned microelectrodes for DEP manipulation of particles. Moreover, a one-dimensional transmission line model is presented to understand the coupling of the acoustic and dielectrophoretic transducers with the microdevice. While the acoustic model does not predict the lateral coupling in the system, it does provide some insight into axial (thickness-mode) frequencies of operation. Experiments are also conducted in which particles were routed into a large (0.75 mm wide) microchannel and preconcentrated and focused into coarse bundles by coupling an acoustic wave into the channel. Subsequently, particles are further focused into single file particle streams using interdigitated DEP electrodes. This system can be used for high throughput assays for which it is necessary to isolate and investigate small bundles of particles and single particles.  相似文献   

11.
Crossed zinc oxide nanorods for ultraviolet radiation detection   总被引:1,自引:0,他引:1  
An ultraviolet photosensor has been successfully constructed by the in situ lift-out method in a focused ion beam system. The prototype consists of individual naturally self-assembled crossed ZnO nanorods grown by an aqueous solution process. The current–voltage (IV) characteristics show linear behavior. The photosensor exhibits a response of 15 mA/W for UV light (361 nm) under 1 V bias. Response measurements showed that such a photosensor is suitable for low levels of ultraviolet detection. The method is simple, rapid and applicable to research prototypes for further studies of crossed ZnO nanorods for nano-device applications.  相似文献   

12.
Manipulation and separation of micro-sized particles, particularly biological particles, using the dielectrophoretic (DEP) force is an emerging technique in MEMS technology. This paper presents a DEP-based microsystem for the selective manipulation and separation of bioparticles using dielectrophoretic effects. The microfabricated DEP device consists of a sandwich structure, in which a microchannel with electrode array lining on its bottom is sandwiched between the substrate and the glass lid. Dielectrophoretic behavior of polystyrene particles with diameter of 4.3 μm was studied. Both positive DEP and negative DEP were observed. Particles under positive DEP were attracted to the edges of the electrodes, while those under negative DEP were repelled away from the electrodes and levitated at certain height above the electrodes (within a proper range of frequencies of the electric field). Levitation height of the particles was measured. It was demonstrated that the levitation height of a specific particle strongly depends on the combined contributions of a number of parameters, such as the frequency of the electric field, dielectric properties of the particles and the surrounding medium. Different particles can be separated and manipulated on the basis of their difference in these parameters.  相似文献   

13.
制备了包括指状交叉、城墙状和梯形的微电极阵列芯片装置.并用这些芯片探索了生物细胞的介电响应.另外观察了酵母和鸡血红细胞的迁移、旋转和融合以及几种细胞收集图片.发现了两种细胞的正、负介电泳现象,确定了这两种细胞的分离条件.讨论了两种细胞正、负介电泳的原因.利用同一芯片在相同的条件下一种细胞移向强场区(正介电泳),另一种细胞移向弱场区(负介电泳).因此可用同一芯片分离不同的细胞.有望建立一种非接触式细胞分离技术,而且在分离过程中不需要添加任何试剂.  相似文献   

14.
We report here the control of the microparticles position within fluid flow based on its size by using dielectrophoresis (DEP) with a microelectrode array consisted of rectangular features with the different size of width and gap. 3 μm- and 10 μm-diameter particles were introduced into the channel with 300 μm height at 30 μl/min. An AC electric field (20 V peak–peak and 2 MHz) was then applied to microelectrode arrays to form dielectrophoretic fluid cage, resulting in a formation of flow paths with low electric fields on the arrays. The microparticles separately flow in line streams along the paths formed between the rectangular features of the arrays, the 3 μm-diameter particles mainly flow through the narrow path and 10 μm-diameter particles through the wide path. These results indicated that positions of two types of microparticles in the fluidic channel were easily separated and controlled using the n-DEP.  相似文献   

15.
This study presents a sheathless and portable microfluidic chip that is capable of high-throughput focusing bioparticles based on 3D travelling-wave dielectrophoresis (twDEP). High-throughput focusing is achieved by sustaining a centralized twDEP field normal to the continuous through-flow direction. Two twDEP electrode arrays are formed from upper and lower walls of the microchannel and extend to its center, which induce twDEP forces to provide the lateral displacements in two directions for focusing the bioparticles. Bioparticles can be focused to the center of the microchannel effectively by twDEP conveyance when the characteristic time due to twDEP conveying in the y direction is shorter than the residence time of the particles within twDEP electrode array. Red blood cells can be effectively focused into a narrow particle stream (~10 μm) below a critical flow rate of 10 μl/min (linear flow velocity ~5 mm/s), when under a voltage of 14 Vp–p at a frequency of 500 kHz is applied. Approximately 90% focusing efficiency for red blood cells can be achieved within two 6-mm-long electrode arrays when the flow rate is below 12 μl/min. Blood cells and Candida cells were also focused and sorted successfully based on their different twDEP mobilities. Compared to conventional 3D-paired DEP focusing, velocity is enhanced nearly four folds of magnitude. 3D twDEP provides the lateral displacements of particles and long residence time for migrating particles in a high-speed continuous flow, which breaks through the limitation of many electrokinetic cell manipulation techniques.  相似文献   

16.
Microfabricated interdigitated electrode array is a convenient form of electrode geometry for dielectrophoretic trapping of particles and biological entities such as cells and bacteria within microfluidic biochips. We present experimental results and finite element modeling of the holding forces for both positive and negative dielectrophoretic traps on microfabricated interdigitated electrodes within a microfluidic biochip fabricated in silicon with a 12-/spl mu/m-deep chamber. Anodic bonding was used to close the channels with a glass cover. An Experimental protocol was then used to measure the voltages necessary to capture different particles (polystyrene beads, yeast cells, spores and bacteria) against destabilizing fluid flows at a given frequency. The experimental results and those from modeling are found to be in close agreement, validating our ability to model the dielectrophoretic filter for bacteria, spores, yeast cells, and polystyrene beads. This knowledge can be very useful in designing and operating a dielectrophoretic barrier or filter to sort and select particles entering the microfluidic devices for further analysis.  相似文献   

17.
Capacitive relative humidity (RH) sensors were fabricated by coating countersunk interdigitated electrode substrates with nanostructured TiO2 films produced using glancing angle deposition. Areal capacitance increased from 1 nF cm−2 to 800 nF cm−2 as relative humidity was increased from 2% RH and 95% RH. For films deposited at 81° and with a thickness below 4 m, response time was (162±4) ms m−1. Response times increased from 64 ms to 1440 ms as film thickness increased from 280 nm to 8.5 m. The linear dependence of response time with film thickness indicates that device response time is dominated by surface adsorption. Response time decreased with increasing deposition angle, with a slope of (−15.2±1.6) ms degree−1 for the adsorption data, and (−17.3±2.5) ms degree−1 for the desorption data. The optimum operating range of the sensors depends on deposition angle, and can be tuned to different ranges to match application needs.  相似文献   

18.
A polymeric membrane ion-selective electrode for determination of melamine is described in this paper. It is based on a molecularly imprinted polymer (MIP) for selective recognition, which can be synthesized by using melamine as a template molecule, methacrylic acid as a functional monomer and ethylene glycol dimethacrylate as a cross-linking agent. The membrane electrode shows near-Nernstian response (54 mV/decade) to the protonated melamine over the concentration range of 5.0 × 10−6 to 1.0 × 10−2 mol L−1. The electrode exhibits a short response time of 16 s and can be stable for more than 2 months. Combined with flow analysis system, the potentiometric sensor has been successfully applied to the determination of melamine in milk samples. Interference from high concentrations of ions co-existing in milk samples such as K+ and Na+ can be effectively eliminated by on-line introduction of anion- and cation-exchanger tandem columns placed upstream, while melamine existing as neutral molecules in milk of pH 6.7 can flow through the ion-exchanger columns and be measured downstream by the proposed electrode in an acetate buffer solution of pH 3.7.  相似文献   

19.
We report a simple, low-cost and novel method for constructing three-dimensional (3D) microelectrodes in microfluidic system by utilizing low melting point metal alloy. Three-dimensional electrodes have unique properties in application of cell lysis, electro-osmosis, electroporation and dielectrophoresis. The fabrication process involves conventional photolithography and sputtering techniques to fabricate planar electrodes, positioning bismuth (Bi) alloy microspheres at the sidewall of PDMS channel, plasma bonding and low temperature annealing to improve electrical connection between metal microspheres and planar electrodes. Compared to other fabrication methods for 3D electrodes, the presented one does not require rigorous experimental conditions, cumbersome processes and expensive equipments. Numerical analysis on electric field distribution with different electrode configurations was presented to verify the unique field distribution of arc-shaped electrodes. The application of 3D electrode configuration with high-conductive alloy microspheres was confirmed by particle manipulation based on dielectrophoresis. The proposed technique offers alternatives to construct 3D electrodes from 2D electrodes. More importantly, the simplicity of the fabrication process provides easy ways to fabricate electrodes fast with arc-shaped geometry at the sidewall of microchannel.  相似文献   

20.
This paper proposed a method of microfabrication for the formation of hemispherical refractive microlenses by depositing a colloid evaporative droplet onto hydrophobic surfaces. The microdroplets made of polyurethane (PU) were self-driven by surface tension to evolve their three-dimensional (3D) shapes on the surface-treated substrate. The substrates were coated with low surface energy material (Teflon) to de-pin the fluids obeying classic Young–Laplace equation until drying. Array and size-variation experiments, corresponding to different placement and droplet volume, were performed for the shaping process in which the polymers of the drops were self-assembled to be hemispherical utilizing general principle of minimal surface energy. Using the hydrophobic surfaces, plano-convex shapes with spherical curvature were fabricated with micrometer dimensions (base radius between 70 and 1016 μm). The formed structures were observed to form themselves hemispherically by the de-wetting (de-pinning) process during most of evaporation. Moreover, the gravity flatting effect was further found for the larger drop (radius = 1016 μm) when compared to that of smaller one (radius = 118 μm). In the cases, both the modeling calculations and experimental results were performed and compared to illustrate the similar geometries with the contact angle (70°) using dimensionless analysis. In addition, one interesting and significant finding, based on close morphological inspection of the SEM picture, showed that the resulting elongational polymer chains (width 200 nm) stretched (extension 5 μm) on the surface nearby the corner of the contact area, indicating a shear stress occurrence. Compared to those previous methods operated on (soft-) photolithographic techniques, this present one could rapidly predict and microfabricate the hemispherical formation in terms of the radius, height, and contact angle. It is also potentially appropriate for smaller and complex placement by using drop-on-demand (DOD) nozzle arrays for mass-production process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号