首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以柠檬酸生产菌黑曲霉TNA—09为原始菌株,通过农杆菌介导的方法,将其α-葡萄糖苷酶基因敲除,得到基因敲除菌株TGA101。对原始菌株黑曲霉TNA-09和基因敲除菌TGA101 α-葡萄糖苷酶活力测定,结果相对于TNA—09菌株,TGA101菌株α-葡萄糖苷酶活力下降61.15%。在柠檬酸发酵试验中表现出相对于黑曲霉TNA-09,TGA101菌株发酵液中异麦芽糖含量降低84.67%,柠檬酸提高2.34%,糖酸转化率提高2.34%。  相似文献   

2.
在进行柠檬酸高浓发酵的研究中发现,柠檬酸高浓发酵残糖高的主要原因是发酵料液中的糖化酶迅速失活、液化淀粉糖化不完全。对生产菌株分泌糖化酶的性质进行研究显示,该酶能够耐受较低pH值,在pH 2.0以下时仍能保留50%以上的酶活性,但对柠檬酸耐受性较差,20 g/L柠檬酸就会对酶活力造成强烈抑制,酶活力损失达90%以上。通过在发酵料液中预加商品糖化酶,加快糖化进程,及时完成糖化,解决了柠檬酸高浓度发酵残糖高的问题。  相似文献   

3.
黑曲霉β-葡萄糖苷酶发酵培养基的优化   总被引:10,自引:0,他引:10  
用响应面方法对黑曲霉(Aspergillusniger)ZJ1生产β-葡萄糖苷酶的培养基进行了优化。首先用部分因子设计对培养基组分稻草粉、麦麸、大麦粉、(NH4)2SO4及pH对β-葡萄糖苷酶活性的影响进行了评价,并找出主要影响因子为稻草粉和(NH4)2SO4,两者均为负影响,其它组分对酶活没有显著影响;再用最陡爬坡路径逼近最大响应区域;最后用中心组合设计及响应面分析确定主要影响因子的最佳浓度。经响应面分析获得的优化培养基组成(g/L)为:稻草粉7.02,麦麸16.65,大麦粉16.65,(NH4)2SO42.44,KH2PO40.5,MgSO4·7H2O0.5。经优化后,β-葡萄糖苷酶酶活性达到403.7U/mL。  相似文献   

4.
为研究黑曲霉CICC 2475产β-葡萄糖苷酶的发酵条件及其分离纯化过程。利用JMP 7.0中的神经网络平台,对黑曲霉CICC 2475产β-葡萄糖苷酶的发酵条件进行了优化。通过硫酸铵分级盐析,DEAE-52阴离子交换层析和Sephacryl S-300 High resolution对粗酶液进行纯化,采用SDS-PAGE凝胶电泳测定其分子量。实验结果表明,黑曲霉产酶的最佳发酵条件:接种量11.0%、初始p H5.6、发酵时间130.0 h、装液量70.0 m L,在该条件下所产β-葡萄糖苷酶的酶活力达118.73 U/m L;经离子交换和凝胶色谱层析可有效纯化β-葡萄糖苷酶,得其分子量约为1.3×105。   相似文献   

5.
已公布的黑曲霉CBS513.88基因组中注释了7个α-葡萄糖苷酶基因信息,但其中主要高活性基因一直未报道。本文通过同源重组构建了黑曲霉SH-2菌株7个α-葡萄糖苷酶基因的系列多重敲除株。α-葡萄糖苷酶活性测定结果显示仅agdB敲除株的酶活相较于野生株SH-2降低36%,而其余多重敲除株菌株酶活影响较小。以敲除糖化酶、淀粉酶背景的黑曲霉SH-2-3菌株为宿主,分别敲除和过量表达基因agdB及与已报道的黑曲霉α-葡萄糖苷酶基因序列相似度最高的基因agdA,结果显示agdB敲除株生长速度在不含葡萄糖的培养条件下最慢,并随着葡萄糖添加量增加;agdB过量表达株酶活提高到野生型的10倍。本研究结果说明目前黑曲霉SH-2基因组中所注释的7个α-葡萄糖苷酶基因中仅agdB为主要高活性α-葡萄糖苷酶基因(占总体酶活36%),黑曲霉SH-2中α-葡萄糖苷酶基因仍需进一步探索。  相似文献   

6.
从十几种霉菌中筛选出1株产α-葡萄糖苷酶活性较高的黑曲霉M-1。采用不同培养方式,液体培养2d或固体培养3d,均有较高的酶活。当种量为5%,29℃酶促反应72h,异麦芽低聚糖含量可达86%以上。  相似文献   

7.
黑曲霉产β-葡萄糖苷酶发酵培养基的优化研究   总被引:1,自引:0,他引:1  
朱凤妹  李军  杜彬  刘长江 《酿酒科技》2008,(3):43-45,47
利用响应面方法对黑曲霉产β-葡萄糖苷酶的发酵培养基进行了优化,研究碳源、氮源、无机盐和pH对β-葡萄糖苷酶活力的影响.利用Box-Benhnken设计和响应面方法对碳源浓度、氮源浓度、初始pH进行试验分析.结果表明,β-葡萄糖苷酶的最佳发酵培养基为:麸皮2%,蛋白胨0.1%,KH2PO40.1%,初始pH6.0.经发酵后的β-葡萄糖苷酶活力达325.62 u/mL.  相似文献   

8.
采用微波诱变技术对黑曲霉J2进行选育,得到1株α-葡萄糖苷酶活力较高的突变菌株ANY-4,酶活力达到305 U/mL,比出发菌株提高了38.6%,且稳定性良好。通过单因素和正交试验得到最适培养条件为:玉米淀粉80 g/L、玉米浆干粉40 g/L、初始pH 4.5、装液量50 mL/500 mL、接种量3%、培养温度36℃、摇床转速240 r/min、培养时间40 h。在最优培养条件下进行发酵,α-葡萄糖苷酶活力达到427 U/mL,比优化前提高了40%。  相似文献   

9.
黑曲霉ZJ1摇瓶发酵产β-葡萄糖苷酶的研究   总被引:3,自引:0,他引:3  
本文研究了黑曲霉ZJ1发酵产 β -葡萄糖苷酶的发酵条件及 β -葡萄糖苷酶的酶学性质。结果表明 :黑曲霉摇瓶发酵产 β -葡萄糖苷酶的培养基组成为 (g/L) :稻草 5 0 ,麦麸 15 ,大麦粉 15 ,(NH4) 2 SO410 ,KH2 PO40 .5 ,MgSO4·7H2 O 0 .5 ,起始pH 5 .0。产酶条件为 :培养温度 2 8℃ ,转速为 2 0 0r/min ,当培养时间为 14 4h ,β -葡萄糖苷酶活性达到最大。β -葡萄糖苷酶的最适作用温度为 5 0℃ ,在 4 0℃时热稳定性较好 ;β -葡萄糖苷酶的最适反应pH为 5 .5 ,在pH 3.0~pH 8.0之间较稳定 ;Zn2 、Al3 、Ca2 和Mn2 对 β -葡萄糖苷酶酶促反应均有一定的促进作用。  相似文献   

10.
糖化酶是一种重要的工业用酶,可用来生产葡萄糖。黑曲霉(Aspergillus niger)是当前国内产糖化酶的主要菌种,在黑曲霉发酵生产糖化酶的过程中,往往需要花费巨额成本去除α-葡萄糖苷酶,以提高糖化酶的纯度和酶解效率。通过提高糖化酶纯度的方法进行综述,针对传统方法去除α-葡萄糖苷酶效果不理想的现实,设计了一种新思路从源头解决糖化酶的纯度问题,希望为工业生产中糖化酶纯度的提高提供一条新途径。  相似文献   

11.
孙继祥 《酿酒科技》2011,(10):42-47
以糖化酶活力为指标,通过单因素实验,分别考察了添加物、补料时间和补料量对黑曲霉发酵产糖化酶的影响。通过正交实验,考察了发酵条件对黑曲霉发酵产酶的影响。结果表明,添加0.4%的(NH4)2SO4作为促进剂可使酶活提高17%,最佳补料时间为48 h,补料量6 mL,补料可使发酵周期由原来的96 h延长到120 h;最佳发酵条件为接种量15%,250 mL三角瓶装液量50 mL,初始pH为4.5。  相似文献   

12.
黑曲霉β-葡萄糖苷酶的食品增香应用   总被引:12,自引:1,他引:12  
将黑曲霉 β 葡萄糖苷酶应用于果汁、茶汁、果酒等的增香 ,经感官鉴评 ,样品间存在显著差异 ,显示较好增香效果。  相似文献   

13.
黑曲霉产β-葡萄糖苷酶培养基的优化研究   总被引:2,自引:0,他引:2  
利用黑曲(Aspergillus Niger)固态发酵生产β-葡萄糖苷酶,采用单因素实验对发酵培养基进行初步优化。结果表明,麦麸与稻草粉比例为1:1,固体(麸皮稻草粉)与液体(营养液)比例为1:2,营养液pH值是自然值(4.44),氮源为2%硫酸铵,表面活性剂为0.1%吐温80,金属离子为1umol Mn^2+,诱导物为0.1%鼠李糖,此备件下β-葡萄糖苷酶酶活较高。  相似文献   

14.
α-转移葡萄糖苷酶的酶学性质研究   总被引:3,自引:0,他引:3  
α-转移葡萄糖苷酶是生产低聚异麦芽糖的关键酶。研究表明,需将该酶稀释到一定倍数,反应一定时间,可达到产物中含有较高的低聚异麦芽糖。该酶的最适pH为5.0,最适反应温度为65℃,不同金属离子对该酶酶活的影响不同。正交实验确定该酶的最佳反应pH为4.15,温度为60℃,时间为3h。  相似文献   

15.
α-转移葡萄糖苷酶是生产低聚异麦芽糖的关键酶。研究表明,需将该酶稀释到一定倍数,反应一定时间,可达到产物中含有较高的低聚异麦芽糖。该酶的最适pH为5.0,最适反应温度为65℃,不同金属离子对该酶酶活的影响不同。正交实验确定该酶的最佳反应pH为4.15,温度为60℃,时间为3h。   相似文献   

16.
黑曲霉菌株D-597所产α-葡萄糖苷酶是胞内酶,完整细胞呈现的酶活力较低。研究了吐温-80、十六烷基溴化铵(CTAB)、乙醚、丙酮、戊二醛、乙醇等渗透剂的透性化效果,并对最适渗透剂戊二醛的透性化条件进行了优化,最优透性化处理条件为:每1g湿菌丝体添加30mL浓度为10%(v/v)的戊二醛溶液,处理温度30℃,处理时间60min。制备所得的透性化细胞的表观酶活达到483.9U/g湿菌体,是完整细胞表观酶活的193.3%。使用透性化细胞转化生产低聚异麦芽糖(IMO),其转化周期为24h,较完整细胞缩短24h,转化率保持在70%以上,具有一定的工业化应用前景。  相似文献   

17.
龙眼核提取物对α-葡萄糖苷酶抑制作用的研究   总被引:6,自引:1,他引:5  
本实验以龙眼核为研究材料,使用水、无水乙醇,甲醇和50%甲醇为提取溶剂对龙眼核进行浸提,并分别测定了四种提取液对α-葡萄糖苷酶的抑制率。结果表明,50%甲醇和水提取物对α-葡萄糖苷酶具有较强的抑制活性,这为龙眼核中降血糖成分的提取分离提供了初步的理论基础。  相似文献   

18.
比较了不同的水果、蔬菜对α-葡萄糖苷酶和α-淀粉酶的抑制作用。结果表明,水果中,杏、猕猴桃对α-葡萄糖苷酶的抑制作用明显,柠檬、青提、红富士也具有比较好的抑制作用;蔬菜中洋葱抑制效果好。但整体来看,水果对α-葡萄糖苷酶的抑制效果明显优于蔬菜。不同种类的蔬果对α-淀粉酶抑制作用有所不同,较强的是猕猴桃、芹菜、胡萝卜,总体来看,蔬菜对α-淀粉酶抑制作用优于水果。混合食用果蔬可为降低餐后血糖提供依据。  相似文献   

19.
利用硫酸铵盐析、季氨乙基-琼脂糖凝胶FF(Q-Sepharose FF)离子交换层析、苯基-琼脂糖凝胶6 FF(Phenyl-Sepharose 6 FF)疏水层析和丁基-琼脂糖凝胶HP(Butyl-Sepharose HP)疏水层析对黑曲霉来源β-葡萄糖苷酶进行分离纯化,采用十二烷基硫酸钠-聚丙酰胺凝胶电泳(SDS-PAGE)测定其分子质量,并对其酶学性质进行研究。结果表明,经分离纯化后得到分子质量约为116 kDa的β-葡萄糖苷酶,纯化倍数达到50.39倍,回收率为4.65%,比酶活为103.80 U/mg,该β-葡萄糖苷酶的最适反应温度为60 ℃,最适反应pH值为5.0,在温度30~50 ℃,pH 2.0~8.0之间具有较好的稳定性。  相似文献   

20.
采用Plackett-Burman(PB)分析法和响应面法(Response surface methodology,RSM)对臭曲霉产α-葡萄糖苷酶的发酵条件进行了优化。PB实验表明麦芽浸粉、KH2PO4、尿素、pH和接种量具有显著影响效应;然后利用最陡爬坡实验逼近最大响应区域,通过中心组合实验对影响产酶的主要因素进行研究,建立了影响因素与响应值之间的回归方程,并获得最佳发酵条件:麦芽浸粉38.13g/L,KH2PO47.88g/L,尿素0.91g/L,pH为5.76,接种量为9.63%。在此优化条件下发酵,α-葡萄糖苷酶产量提高了35%左右,达到1218.6U/mL。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号