共查询到20条相似文献,搜索用时 0 毫秒
1.
Wire arc additive manufacturing (WAAM) provides a rapid and cost-effective solution for fabricating low-to-medium complexity and medium-to-large size metal parts. In WAAM, process settings are well-recognized as fundamental factors that determine the performance of the fabricated parts such as geometry accuracy and microstructure. However, decision-making on process variables for WAAM still heavily relies on knowledge from domain experts. For achieving reliable and automated production, process planning systems that can capture, store, and reuse knowledge are needed. This study proposes a process planning framework by integrating a WAAM knowledge base together with our in-house developed computer-aided tools. The knowledge base is construed with a data-knowledge-service structure to incorporate various data and knowledge including metamodels and planning rules. Process configurations are generated from the knowledge base and then used as inputs to computer-aided tools. Moreover, the process planning system also supports the early-stage design of products in the context of design for additive manufacturing. The proposed framework is demonstrated in a digital workflow of fabricating industrial-grade components with overhang features. 相似文献
2.
The conventional manufacturing of aircraft components is based on the machining from bulk material and the buy-to-fly ratio is high. This, in combination with the often low machinability of the materials in use, leads to high manufacturing costs. To reduce the production costs for these components, a process chain was developed, which consists of an additive manufacturing process and a machining process. To fully utilize the process chain’s capabilities, an integrated process planning approach is necessary. As a result, the work sequence can be optimized to achieve the economically most suitable sequence. In this paper, a method for a joint manufacturing cost calculation and subsequent decision-based cost minimization is proposed for the wire and arc additive manufacturing (WAAM) & milling process chain. Furthermore, the parameters’ influence on the results and the magnitude of their influence are determined. These results make it possible to design an economically optimal work sequence and to automate the process planning for this process chain. 相似文献
3.
Cyber-physical security is a major concern in the modern environment of digital manufacturing, wherein a cyber-attack has the potential to result in the production of defective parts, theft of IP, or damage to infrastructure or the operator have become a real threat that have the potential to create bad parts. Current cyber only solutions are insufficient due to the nature of manufacturing environments where it may not be feasible or even possible to upgrade physical equipment to the most current cyber security standards, necessitating an approach that addresses both the cyber and the physical components. This paper proposes a new method for detecting malicious cyber-physical attacks on additive manufacturing (AM) systems. The method makes use of a physical hash, which links digital data to the manufactured part via a disconnected side-channel measurement system. The disconnection ensures that if the network and/or AM system becomes compromised, the manufacturer can still rely on the measurement system for attack detection. The physical hash ensures protection of the intellectual property (IP) associated with both process and toolpath parameters while also enabling in situ quality assurance. In this paper, the physical hash takes the form of a QR code that contains a hash string of the nominal process parameters and toolpath. It is manufactured alongside the original geometry for the measurement system to scan and compare to the readings from its sensor suite. By taking measurements in situ, the measurement system can detect in real-time if the part being manufactured matches the designer’s specification.In this paper, the overall concept and underlying algorithm of the physical hash is presented. A proof-of-concept validation is realized on a material extrusion AM machine, to demonstrate the ability of a physical hash and in situ monitoring to detect the existence (and absence) of malicious attacks on the STL file, the printing process parameters, and the printing toolpath. 相似文献
4.
Additive manufacturing (AM) is poised to bring about a revolution in the way products are designed, manufactured, and distributed to end users. This technology has gained significant academic as well as industry interest due to its ability to create complex geometries with customizable material properties. AM has also inspired the development of the maker movement by democratizing design and manufacturing. Due to the rapid proliferation of a wide variety of technologies associated with AM, there is a lack of a comprehensive set of design principles, manufacturing guidelines, and standardization of best practices. These challenges are compounded by the fact that advancements in multiple technologies (for example materials processing, topology optimization) generate a “positive feedback loop” effect in advancing AM. In order to advance research interest and investment in AM technologies, some fundamental questions and trends about the dependencies existing in these avenues need highlighting. The goal of our review paper is to organize this body of knowledge surrounding AM, and present current barriers, findings, and future trends significantly to the researchers. We also discuss fundamental attributes of AM processes, evolution of the AM industry, and the affordances enabled by the emergence of AM in a variety of areas such as geometry processing, material design, and education. We conclude our paper by pointing out future directions such as the “print-it-all” paradigm, that have the potential to re-imagine current research and spawn completely new avenues for exploration. 相似文献
5.
There is significant interest today in integrating additive manufacturing (AM) and topology optimization (TO). However, TO often leads to designs that are not AM friendly. For example, topologically optimized designs may require significant amount of support structures before they can be additively manufactured, resulting in increased fabrication and clean-up costs.In this paper, we propose a TO methodology that will lead to designs requiring significantly reduced support structures. Towards this end, the concept of ‘support structure topological sensitivity’ is introduced. This is combined with performance sensitivity to result in a TO framework that maximizes performance, subject to support structure constraints. The robustness and efficiency of the proposed method is demonstrated through numerical experiments, and validated through fused deposition modeling, a popular AM process. 相似文献
6.
In this study, a ubiquitous manufacturing network system was constructed. In this system, a customer places an order for an action figure by using a client-side app or a Web-based interface and pays online. The system server then assigns the order to the convenience store nearest the customer's location to print the required action figure. For determining the most suitable convenience store, a fuzzy integer-nonlinear programming model was proposed and solved using two modified fuzzy Dijkstra algorithms. Subsequently, the customer is informed of the location of and route to the recommended convenience store. Two illustrative cases were used to verify the applicability of using the proposed methodology. In addition, compared with an existing mobile guide, the proposed methodology effectively recommended the shortest path for obtaining the required action figure and reduced the waiting time at the convenience store. 相似文献
7.
Digital manufacturing technologies [1] are gaining more and more importance as key enabling technologies in future manufacturing, especially when a flexible scalable manufacturing of small medium series of customized parts is required. The paper describes a new approach for design manufacturing of complex three dimensional components building on a combination of digital manufacturing technologies such as laminated objects manufacturing, laser and e-printing technologies. The micro component is made up of stacks of functionalized layers of polymer films. The concept is currently developed further in the project SMARTLAM [2], [3], funded by the European Commission. The manufacturing system is based on a flexible, scalable and modular equipment and application features approach which enables the manufacturing of different small size batches without tool or mask making in short time. Different modules can be combined by defined hardware and software interfaces. Avoiding time consumable and difficult programming caused by manufacturing a new conceptual approach a Function-Block Runtime (FORTE) executes generated control application platform-independently and coordinates component module functionalities. The control system is designed to integrate all processes as well as the base platform with features far beyond ordinary PLC systems. One aspect is the use of process data out of the data acquisition system to simulate and optimize the processes. These results are incorporated into the main machine control system. Another aspect is the vision system for flexible quality control and closed-loop positioning control with visual servoing.The paper shows the overall concept of SMARTLAM and exemplarily demonstrates the control system as well as the modular equipment approach by the example of the control system for alignment of different stacks and inspection system. 相似文献
8.
Additive manufacturing offers new available categories of geometries to be built. Among those categories, one can find the well developing field of lattice structures. Attention has been paid on lattice structures for their lightweight and mechanical efficiency ratio, thus leading to more optimized mechanical parts for systems. However this lightness only holds true from a mass related point of view. The files sent to additive manufacturing machines are quite large and can go up to such sizes that machines can freeze and get into malfunction. This is directly related to the lattice structures tendency to be of a high geometric complexity. A large number of vertices and triangles are necessary to describe them geometrically, thus leading to larger file sizes. With the increasing use of lattice structures, the need for their files to be lighter is also rising. This paper aims at proposing a method for tessellating a certain category of such structures, using topologic and geometric criteria to generate as few as possible triangles, thus leading to lightweight files. The triangulation technique is driven by a chordal error that controls the deviation between the exact and tessellated structures. It uses interpolation, boolean as well as triangulation operators. The method is illustrated and discussed through examples from our prototype software. 相似文献
9.
Arc welding has been widely explored for additive manufacturing of large metal components over the last three decades due to its lower capital cost, an unlimited build envelope, and higher deposition rates. Although significant improvements have been made, an arc welding process has yet to be incorporated in a commercially available additive manufacturing system. The next step in exploiting “true” arc-welding-based additive manufacturing is to develop the automation software required to produce CAD-to-part capability. This study focuses on developing a fully automated system using robotic gas metal arc welding to additively manufacture metal components. The system contains several modules, including bead modelling, slicing, deposition path planning, weld setting, and post-process machining. Among these modules, bead modelling provides the essential database for process control, and an innovative path planning strategy fulfils the requirements of the automated system. A user friendly interface has been developed for non-experts to operate the developed system. Finally, a thin-walled aluminium structure has been fabricated automatically using only a CAD model as the informational input to the system. This exercise demonstrates that the developed system is a significant contribution towards the ultimate goal of producing a practical and highly automated arc-welding-based additive manufacturing system for industrial application. 相似文献
10.
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) rapidly achieved global pandemic status. The pandemic created huge demand for relevant medical and personal protective equipment (PPE) and put unprecedented pressure on the healthcare system within a very short span of time. Moreover, the supply chain system faced extreme disruption as a result of the frequent and severe lockdowns across the globe. In such a situation, additive manufacturing (AM) becomes a supplementary manufacturing process to meet the explosive demands and to ease the health disaster worldwide. Providing the extensive design customization, a rapid manufacturing route, eliminating lengthy assembly lines and ensuring low manufacturing lead times, the AM route could plug the immediate supply chain gap, whilst mass production routes restarted again. The AM community joined the fight against COVID-19 by producing components for medical equipment such as ventilators, nasopharyngeal swabs and PPE such as face masks and face shields. The aim of this article is to systematically summarize and to critically analyze all major efforts put forward by the AM industry, academics, researchers, users, and individuals. A step-by-step account is given summarizing all major additively manufactured products that were designed, invented, used, and produced during the pandemic in addition to highlighting some of the potential challenges. Such a review will become a historical document for the future as well as a stimulus for the next generation AM community. 相似文献
11.
Iterative learning control (ILC) is a method for improving the performance of stable, repetitive systems. Standard ILC is constructed in the temporal domain, with performance improvements achieved through iterative updates to the control signal. Recent ILC research focuses on reformulating temporal ILC into the spatial domain, where 2D convolution accounts for spatial closeness. This work expands spatial ILC to include optimization of multiple performance metrics. Performance objectives are classified into primary, complementary, competing, and domain specific objectives. New robustness and convergence criteria are provided. Simulation results validate flexibility of the spatial framework on a high-fidelity additive manufacturing system model. 相似文献
12.
Recent development in the Wire arc additive manufacturing (WAAM) provides a promising alternative for fabricating high value-added medium to large metal components for many industries such as aerospace and maritime industry. However, challenges stemming from the demand for increasingly complex and high-quality products, hinder the widespread adoption of the conventional WAAM method for manufacturing industries. The development of artificial intelligence (AI) techniques may provide new opportunities to upgrade WAAM to the next generation. Hence, this paper provides a comprehensive review of the state-of-the-art research on AI techniques in WAAM. Firstly, we proposed a novel concept of intelligent wire arc additive manufacturing (IWAAM) and revealed the challenges of developing IWAAM. Secondly, an overview of the research progress of applying AI techniques to several aspects of the WAAM process chain, including fabrication process pre-design, online deposition control and offline parameter optimization is provided. Thirdly, the relevant machine learning algorithms, and the knowledge of corresponding AI techniques, are also reviewed in detail. Through reviewing the current research articles, issues of applying AI techniques to the WAAM process are presented and analysed. Finally, future research perspectives in terms of novel AI technique applications and AI technique enhancement are discussed. Through this systematic review, it is expected that WAAM may gradually develop into a smart/intelligent manufacturing technology in the context of Industry 4.0 through the adoption of AI techniques. 相似文献
13.
We present a generative method for the creation of geometrically complex and materially heterogeneous objects. By combining generative design and additive manufacturing, we demonstrate a unique form-finding approach and method for multi-material 3D printing. The method offers a fast, automated and controllable way to explore an expressive set of symmetrical, complex and colored objects, which makes it a useful tool for design exploration and prototyping. We describe a recursive grammar for the generation of solid boundary surface models suitable for a variety of design domains. We demonstrate the generation and digital fabrication of watertight 2-manifold polygonal meshes, with feature-aligned topology that can be produced on a wide variety of 3D printers, as well as post-processed with traditional 3D modeling tools. To date, objects with intricate spatial patterns and complex heterogeneous material compositions generated by this method can only be produced through 3D printing. 相似文献
14.
Additive manufacturing (AM) of metal materials has attracted widespread attention and is shifting the conventional manufacturing landscape toward free-form processes. With increasing concerns about global sustainability, eco-consideration is highly encouraged to be integrated into AM processes. This review provides a comprehensive and timely discussion on the life cycle of metal parts fabricated through AM. The energy consumption required for raw metal material extraction and subsequent AM processes is analyzed. The eco-design and energy efficiency of metal AM are evaluated to reveal the role of manufacturing methods, machine subsystems, and post-processing modes in the eco-integration. AM-induced supply chain management, utilization, and recycling of the printed metal structure are also analyzed. Finally, a comprehensive life cycle assessment regarding the environmental, social, and economic impacts of metal AM is also addressed. Future directions of AM are also briefly discussed to provide insight and vision on the emerging field of additive eco-manufacturing. 相似文献
15.
Wire and arc additive manufacturing (WAAM) is an emerging manufacturing technology that is widely used in different manufacturing industries. To achieve fully automated production, WAAM requires a dependable, efficient, and automatic defect detection system. Although machine learning is dominant in the object detection domain, classic algorithms have defect detection difficulty in WAAM due to complex defect types and noisy detection environments. This paper presents a deep learning-based novel automatic defect detection solution, you only look once (YOLO)-attention, based on YOLOv4, which achieves both fast and accurate defect detection for WAAM. YOLO-attention makes improvements on three existing object detection models: the channel-wise attention mechanism, multiple spatial pyramid pooling, and exponential moving average. The evaluation on the WAAM defect dataset shows that our model obtains a 94.5 mean average precision (mAP) with at least 42 frames per second. This method has been applied to additive manufacturing of single-pass, multi-pass deposition and parts. It demonstrates its feasibility in practical industrial applications and has potential as a vision-based methodology that can be implemented in real-time defect detection systems. 相似文献
16.
This study presents a detailed analysis of the production efforts for personal protective equipment in makerspaces and informal production spaces (i.e., community-driven efforts) in response to the COVID-19 pandemic in the United States. The focus of this study is on additive manufacturing (also known as 3D printing), which was the dominant manufacturing method employed in these production efforts. Production details from a variety of informal production efforts were systematically analyzed to quantify the scale and efficiency of different efforts. Data for this analysis was primarily drawn from detailed survey data from 74 individuals who participated in these different production efforts, as well as from a systematic review of 145 publicly available news stories. This rich dataset enables a comprehensive summary of the community-driven production efforts, with detailed and quantitative comparisons of different efforts. In this study, factors that influenced production efficiency and success were investigated, including choice of PPE designs, production logistics, and additive manufacturing processes employed by makerspaces and universities. From this investigation, several themes emerged including challenges associated with matching production rates to demand, production methods with vastly different production rates, inefficient production due to slow build times and high scrap rates, and difficulty obtaining necessary feedstocks. Despite these challenges, nearly every maker involved in these production efforts categorized their response as successful. Lessons learned and themes derived from this systematic study of these results are compiled and presented to help inform better practices for future community-driven use of additive manufacturing, especially in response to emergencies. 相似文献
17.
Laser powder bed fusion (LPBF) is a technique of additive manufacturing (AM) that is often used to construct a metal object layer-by-layer. The quality of AM builds depends to a great extent on the minimization of different defects such as porosity and cracks that could occur by process deviation during machine operation. Therefore, there is a need to develop new analytical methods and tools to equip the LPBF process with the inspection frameworks that assess the process condition and monitor the porosity defect in real-time. Advanced sensing is recently integrated with the AM machines to cope with process complexity and improve information visibility. This opportunity lays the foundation for online monitoring and assessment of the in-process build layer. This study presents the hybrid deep neural network structure with two types of input data to monitor the process parameters that result in porosity defect in cylinders’ layers. Results demonstrate that statistical features extracted by wavelet transform and texture analysis along with original powder bed images, assist the model in reaching a robust performance. In order to illustrate the fidelity of the proposed model, the capability of the main pipeline is examined and compared with different machine learning models. Eventually, the proposed framework identified the process conditions with an F-score of 97.14%. This salient flaw detection ability is conducive to repair the defect in real-time and assure the quality of the final part before the completion of the process. 相似文献
18.
We present a bitmap printing method and digital workflow using multi-material high resolution Additive Manufacturing (AM). Material composition is defined based on voxel resolution and used to fabricate a design object with locally varying material stiffness, aiming to satisfy the design objective. In this workflow voxel resolution is set by the printer’s native resolution, eliminating the need for slicing and path planning. Controlling geometry and material property variation at the resolution of the printer provides significantly greater control over structure–property–function relationships. To demonstrate the utility of the bitmap printing approach we apply it to the design of a customized prosthetic socket. Pressure-sensing elements are concurrently fabricated with the socket, providing possibilities for evaluation of the socket’s fit. The level of control demonstrated in this study cannot be achieved using traditional CAD tools and volume-based AM workflows, implying that new CAD workflows must be developed in order to enable designers to harvest the capabilities of AM. 相似文献
19.
Olivier Kerbrat Pascal Mognol Jean-Yves HascoëtAuthor vitae 《Computers in Industry》2011,62(7):684-692
Design for manufacturing (DFM) approaches aim to integrate manufacturability aspects during the design stage. Most of DFM approaches usually consider only one manufacturing process, but product competitiveness may be improved by designing hybrid modular products, in which products are seen as 3-D puzzles with modules realized individually by the best manufacturing process and further gathered. A new DFM system is created in order to give quantitative information during the product design stage of which modules will benefit in being machined and which ones will advantageously be realized by an additive process (such as Selective Laser Sintering or laser deposition). A methodology for a manufacturability evaluation in case of a subtractive or an additive manufacturing process is developed and implemented in a CAD software. Tests are carried out on industrial products from automotive industry. 相似文献
20.
With rapid advances in internet and computing technologies, sharing economy paves a new way for people to “share” assets and services with others that disrupts traditional business models across the world. Specifically, rapid growth of additive manufacturing (AM) enables individuals and small manufacturers to own machines and share under-utilized resources with others. Such a decentralized market calls upon the development of new analytical methods and tools to help customers and manufacturers find each other and further shorten the AM supply chain. This paper presents a bipartite matching framework to model the resource allocation among customers and manufacturers and leverage the stable matching algorithm to optimize matches between customers and AM providers. We perform a comparison study with Mix Integer Linear Programming (MILP) optimization as well as the first-come-first-serve (FCFS) allocation strategy for different scenarios of demand-supply configurations (i.e., from 50% to 500%) and system complexities (i.e., uniform parts and manufacturers, heterogeneous parts and uniform manufacturers, heterogeneous parts and manufacturers). Experimental results show that the proposed framework has strong potentials to optimize resource allocation in the AM sharing economy. 相似文献