首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Neck-shoulder and upper back musculoskeletal symptoms in smartphone users have gained increasing attention. We evaluated trapezius muscle activity and fatigue using an objective method (surface electromyography, sEMG), and discomfort using a subjective method (questionnaire), in smartphone users during the performance of different text-entry tasks. Fifteen participants were recruited to perform six text-entry tasks under different forearm conditions (floating and supported) and body postures (sitting, standing, lying, and walking). We collected upper trapezius (UT) and lower trapezius (LT) sEMG data, and recorded muscle discomfort scores after each task. We found that static postures (especially sitting) during smartphone use predisposed to lower muscle activity with higher fatigue level and discomfort scores than dynamic posture; there was a significant main effect of body posture on average sEMG amplitude (aEMG) and discomfort scores of both muscles (all p < 0.05). Moreover, using a smartphone with the forearm supported can reduce muscle activity, fatigue level, and discomfort scores; there was a significant main effect of the forearm condition on aEMG and discomfort scores of both muscles (all p < 0.05). Our study indicates that smartphone use with the forearm floating for a long time in a static posture should be avoided (especially while sitting).  相似文献   

2.
While using their smartphone, users tend to adopt awkward neck and shoulder postures for an extended duration. Such postures impose the risk of MSDs on those body parts. Numerous studies have been undertaken to examine neck posture; however, few studies have investigated shoulder postures. This study examined various shoulder postures during smartphone use and their effect on neck and shoulder kinematics, muscle loading, and neck/shoulder discomfort. Thirty-two asymptomatic young adult smartphone users randomly performed texting tasks for 3 min at four different shoulder flexion angles (15°, 30°, 45°, and 60°), while maintained a neck posture in the neutral position (0° neck flexion angle). Measures were taken of neck and shoulder muscle activity of the cervical erector spinae (CES), anterior deltoid (AD), upper trapezius (UT) and lower trapezius (LT), and kinematic data (angle, distance and gravitational moment). Results showed AD and LT muscle activity significantly increased when the shoulder flexion angle increased with an opposite effect on CES and UT. A recommended shoulder posture was identified as 30° flexion, as this yielded the best compromise between activation levels of the four muscles studied. This angle also induced the lowest neck/shoulder discomfort score. The findings suggest smartphone users hold their device at approximately 30° shoulder flexion angle with their neck in a neutral posture to reduce the risk of shoulder and neck musculoskeletal disorders when smartphone texting.Relevance to industrySmartphone use in the manufacturing and service industries is an integral part of work and useful means of communication tool. Awkward postures during extensive smartphone use impose an increased risk of both neck and shoulder musculoskeletal disorders. Shoulder flexion angles need consideration when making recommendations about safe work postures during smartphone use.  相似文献   

3.
《Ergonomics》2012,55(8):1304-1314
The aim of this study was to compare the biomechanical characteristics of sitting on a stool without a backrest (so as to encourage active sitting), sitting on a conventional office chair and standing in healthy participants. Thirteen healthy participants performed a keyboard-writing task during four (stable and unstable) sitting conditions and standing. Body segment positions and posture, postural sway and muscle activity of neck and trunk muscles were assessed with a motion capture system, a force plate and surface electromyography. The results showed that body segment positions, postural sway and trunk muscle activity were relatively similar for the stools without backrests compared with standing. All sitting conditions showed lower vertical upper body alignment, less anterior pelvic tilt and larger hip angles, compared with standing (p = 0.000). Unexpectedly, the muscle activity levels and total postural sway, sway velocity and sway in M/L and A/P directions were lower (p = 0.000) for the conditions that encouraged active sitting and standing, compared with the conventional office chair conditions.

Practitioner Summary: Thirteen healthy participants performed a keyboard-writing task during different sitting conditions and standing and were analysed regarding posture, postural sway and trunk muscle activity. Surprisingly, less postural sway and less muscle activity were observed during the conditions that encourage active sitting, compared with sitting on a conventional office chair.  相似文献   

4.
Sit-stand stools are available for use in industrial settings, but there is a lack of quantitative evidence demonstrating benefits for lower limb, back and/or neck/shoulder outcomes. In this paper we describe an experiment conducted to compare and contrast posture and time-related differences in muscular and vascular outcomes during 34 min of manual repetitive work performed in either standing or sit-standing work posture. We measured vascular parameters in the lower limbs, and muscular parameters in the trunk and neck/shoulder, and discomfort in the three regions as participants accomplished a repetitive box-folding task. Results show that blood flow in the foot (p = 0.022) and ankle mean arterial pressure (p < 0.001) were greater during standing. Left gluteus medius and external oblique activation was higher during standing, while sit-standing work resulted in higher levels of co-activation between the left erector spinae and external oblique muscle pair (p = 0.026). Neck/shoulder muscle activity was not significantly different between the conditions. Reported discomfort did not differ significantly for the trunk and neck/shoulder region, but standing resulted in higher level of reported discomfort in the lower limb. The sit-stand posture used in this experiment appears to prevent the undesirable lower limb outcomes associated with static standing work posture.Relevance to industryThis work demonstrates quantitative evidence to support the potential use of a sit-stand stool for industrial work operations, at least over relatively short durations.  相似文献   

5.
Although smartphones are used as essential devices in everyday life, many users are exposed to joint diseases owing to prolonged use. The objectives of this study were to analyze how posture and smartphone tasks affect various body flexion angles and develop an algorithm to classify posture/task and estimate body flexion angles using smartphone tilt data. Eighteen participants performed two tasks (playing a game and reading news) in two postures (sitting and standing) in a laboratory environment. The three-axis orientation data (azimuth, pitch, and roll) of the smartphone and the participants’ body flexion angles were measured simultaneously. This study found that the cervical, thoracic, lumbar, and overall flexion angles were all statistically significantly different depending on the posture of the smartphone user, and the cervical flexion angle was significantly different depending on the task. Furthermore, task and task × posture can be classified with high accuracy based on smartphone tilt data, and tilt data had a high correlation with body flexion angles. Relevance to industry: The results of this study can be used as a reference for designing various products and interfaces for neck health. The results can be applied as a smartphone alarm or a built-in application, which can inform the user of the need to stretch his or her neck.  相似文献   

6.
Association between smartphone use and head-down tilt posture has not yet been quantitatively evaluated in natural settings. This study aimed to objectively assess the angle and duration of head-down tilt posture of smartphone users during a typical working day via naturalistic data collection. Thirty-one college students conducted their typical school activities while their head posture and smartphone-app usage records were collected simultaneously for 8?hours. Participants spent 125.9?minutes (median usage duration) on their smartphones with significantly larger head-down tilt (p?<?.05) than when they were not using the phone. Head tilt angle greater than 30° was found to be more common when using the phone, while head tilt less than 20° was more common when they were not using the phone. Study findings provide empirical evidence that supports an association between the duration of smartphone use and the intensity of head-down tilt posture.

Practitioner Summary: Head postures of young smartphone users were quantified for 8?hours continuously during a typical workday using a wearable sensor. Participants spent more time in larger head-down tilt postures (greater than 30°) when they were using their smartphones as compared to when they were not using them.  相似文献   


7.
ObjectiveWe validated the effect of moveable arm support (Armrest®) on wrist posture during three standardized tasks.BackgroundThe use of the computer mouse has been increasing over the years and it has been identified as one of the occupational activities related to carpal tunnel syndrome (CTS). The main mechanism for CTS is carpal tunnel pressure (CTP) that could be estimated from the wrist posture.MethodUsing an electronic goniometer, we assessed wrist extension/flexion and ulnar-radial flexion in 15 participants (age: 34.8 [8.7] years) and calculated the time the wrist posture was outside the threshold values previously related to CTP. Specifically, we estimated time when wrist posture yielded >25 mmHg of CTP: wrist extension >32.7°; wrist flexion < −48.6°; wrist ulnar flexion >14.5°; and wrist radial flexion < −21.8°.ResultsAverage wrist extension/flexion tends to be 13.4° lower (p = 0.063), while radial-ulnar flexion was 13.2° lower (p = 0.025) when Armrest® forearm support was used in comparison to fixed forearm support. Furthermore, the time spent outside the threshold wrist extension was 25.8% (p = 0.018) lower and ulnar flexion was 37.2% (p = 0.017) lower when using Armrest® compared to a fixed forearm support. Results were independent from tasks.ConclusionArmrest® diminished the time spent outside the threshold values related to 25 mmHg of CTP indicative of CTS.ApplicationA moveable arm support is a simple and effective way to increase occupational health during computer mouse work.  相似文献   

8.
IntroductionThis study aimed to investigate the effects of different seat thicknesses on lower limb momentum and lower limb blood flow in a narrow enclosed space simulating public places.MethodsWe enrolled 15 female volunteers. We measured the maximum venous blood flow velocity (peak velocity [PV]) of the superficial femoral vein, the range of knee joint movements, and the number of knee joint movements while the subjects sat on the thicker- or thinner-tip seat for 140 min.ResultsThere was a difference in the change rate of PV after 140 min of sitting: thinner-tip seat groups: 22.3% (−31.1 − −13.5%); thinner-tip seat groups: 6.9% (−16.5 − 2.8%) (P < 0.001). There was a significant difference in the range of knee joint motion between the two seats: thicker-tip seat: 24.5° (19.9°–29.1°); thinner-tip seat: 36.6° (29.1°–44.1°) (P = 0.01). There was a significant positive correlation between the change rates of PV and the knee joint range of motion (r = 0.41, P = 0.03).ConclusionsOur findings suggest that a seat structure that does not restrict lower limb movement may help inhibit reductions in lower limb blood flow when sitting for long periods.  相似文献   

9.
Background and aimGastroesophageal reflux disease (GERD) has been associated with sick leave, decreased work productivity and poor quality of life. Another possible cause for the development of GERD is the relationship with maintaining the posture in flexion of the spine. The aim of this study was: (1) to compare gastro esophageal reflux with musculoskeletal disorders and quality of life of dentists, (2) to evaluate the association between gastro esophageal reflux such as time in the profession, time working while sitting, musculoskeletal disorders and quality of life of dentists.Methods83 dentists (23 males and 60 females; average age 39.3 years old) participated in the study, who were evaluated for their time in the profession, sitting time, musculoskeletal disorders, quality of life (SF-12v2) and the GERD symptoms using the Frequency Scale for Symptoms of GERD (FSSG) questionnaire.ResultsThe results showed that the majority were female (72.3%) and sendentary (74.7%). A difference was found between the level of GERD with musculoskeletal disorders (p < 0.05) and quality of life (p < 0.05). An association was also found between GERD and working time (p < 0.01), sitting working time (p < 0.05), headache (p < 0.01) and quality of life (p < 0, 01).ConclusionThis study showed that there was an association with working time, sitting time, musculoskeletal disorders, quality of life and GERD in dentists.  相似文献   

10.
Potential alternatives for conventional sitting and standing postures are hybrid sit-stand postures (i.e. perching). The purposes of this study were (i) to identify where lumbopelvic and pelvic angles deviate from sitting and standing and (ii) to use these breakpoints to define three distinct postural phases: sitting, perching, and standing, in order to examine differences in muscle activations and ground reaction forces between phases. Twenty-four participants completed 19 1-min static trials, from sitting (90°) to standing (180°), sequentially in 5°trunk–thigh angle increments. The perching phase was determined to be 145–175° for males and 160–175° for females. For both sexes, knee extensor activity was lower in standing compared to perching or sitting (p < .01). Anterior–posterior forces were the highest in perching (p < .001), requiring ~15% of body-weight. Chair designs aimed at reducing the lower limb demands within 115–170° trunk–thigh angle may improve the feasibility of sustaining the perched posture.

Practitioner summary: Individuals who develop low back pain in sitting or standing may benefit from hybrid sit-stand postures (perching), yet kinematic and kinetic changes associated with these postures have not been investigated. Perching can improve lumbar posture at a cost of increased lower limb demands, suggesting potential avenues for chair design improvement.

Abbreviations: A/P: anterior-posterior; M/L: medial-lateral; LBP: low back pain; EMG: electromyography; TES: thoracic erector spinae; LES: lumbar erector spinae; VMO: vastus medialis obliquus; MVC: maximum voluntary contraction; ASIS: anterior superior iliac spine; PSIS: posterior superior iliac spine; BW: body weight; RMSE: root mean square error; SD: standard deviation; ROM: range of motion  相似文献   


11.
By combining embedded passive sensing technologies from both smartphone and smartwatch, it is possible to obtain a high quality detection of sedentary activities (sitting, reclining posture…), movements (walking…) and periods of more intense body movements (running…). Our research encompasses the definition of an energy-saving function for the total energy expenditure (TEE) estimation using accelerometry data. This topic is clearly at the crossroad of both computer science and medical research. The present contribution proposes an intelligent wearable system, which combines the use of two complementary devices: smartphone and smartwatch to collect accelerometry data. Together they can precisely discriminate real-world human sedentary and active behaviors and their duration and estimate energy expenditure in real time and in free-living conditions. The results of the study are expected to help subjects to handle their daily-living physical activity notably for being compliant with the physical activity international guidelines (150 min of moderate intensity activity/week). It is also expected that the physical activity feedbacks using these popular devices can prove the effectiveness of such wearable objects to promote individually-adapted healthy behavioral changes. The performance of the proposed function was evaluated by comparing the energy expenditure given by the smartphone and smartwatch with that produced by Armband®. The mean error of TEE between the proposed function and Armband® was less than 4% for an average 6 h period of daily-living activities. The main theoretical contribution is the definition of a new predictive mathematical function of energy expenditure, which competes with the non-public function used in dedicated costly devices such as Armband®. In addition, this work demonstrates the potential of wearable technologies.  相似文献   

12.
《Ergonomics》2012,55(12):1685-1695
Abstract

Ergonomics science recommends office chairs that promote active sitting to reduce sitting related complaints. Since current office chairs do not fulfill this recommendation, a new chair was developed by inverting an existing dynamic chair principle. This study compares active sitting on the inverted chair during a simulated computer-based office task to two existing dynamic office chairs (n?=?8). Upper body stability was analysed using Friedman ANOVA (p?=?.01). In addition, participants completed a questionnaire to rate their comfort and activity after half a working day.

The inverted chair allowed the participants to perform a substantial range of lateral spine flexion (11.5°) with the most stable upper body posture (≤11?mm, ≤2°, p?≤?.01). The results of this study suggest that the inverted chair supports active sitting with backrest support during computer-based office work. However, according to comfort and activity ratings, results should be verified in a future field study with 24 participants.

Practitioner Summary: This experimental laboratory study analyses the feasibility of active sitting with a backrest support during common office work on a new type of dynamic office chair. The results demonstrate that active sitting with a backrest support is feasible on the new but limited on existing chairs.  相似文献   

13.
Research suggests that cell phone use is related to sedentary behavior, that cell phone use during exercise reduces intensity, and that high frequency cell phone users are less fit than other users. Thus, cell phone use appears connected to health and fitness behaviors and should be better understood within this context. The present study investigated the sedentary nature of cell phone use, and examined the likelihood of cellphone use interfering with exercise behavior.DesignA validated survey was administered to a random sample of students from a public US university (N = 226).ResultsMean self-reported cell phone use was 380 min day−1, 87% reported cell phone use primarily occurs while sitting, and 70% of use was for leisure. Cell phone use was positively related to sedentary behavior (β = 0.30, p < 0.001). It was not related to physical activity. However, the likelihood of cell phone use during moderate (p = 0.006) and mild (p < 0.001) intensity exercise increased as cell phone use increased.ConclusionLike other screens (e.g., TVs), cell phone use appears to be a sedentary leisure behavior. Furthermore, high frequency use increases the likelihood that it will occur during exercise, likely lowering exercise intensity.  相似文献   

14.
《Ergonomics》2012,55(12):1586-1595
Low back pain (LBP) is a common musculoskeletal disorder and prolonged sitting often aggravates LBP. A novel dynamic ergonomic chair (‘Back App’), which facilitates less hip flexion while sitting on an unstable base has been developed. This study compared lumbar posture and trunk muscle activation on this novel chair with a standard backless office chair. Twelve painfree participants completed a typing task on both chairs. Lumbar posture and trunk muscle activation were collected simultaneously and were analysed using paired t-tests. Sitting on the novel dynamic chair significantly (p < 0.05) reduced both lumbar flexion and the activation of one back muscle (Iliocostalis Lumborum pars Thoracis). The discomfort experienced was mild and was similar (p > 0.05) between chairs. Maintaining lordosis with less muscle activation during prolonged sitting could reduce the fatigue associated with upright sitting postures. Studies with longer sitting durations, and in people with LBP, are required.

Practitioner Summary: Sitting on a novel dynamic chair resulted in less lumbar flexion and less back muscle activation than sitting on a standard backless office chair during a typing task among pain-free participants. Facilitating lordotic sitting with less muscle activation may reduce the fatigue and discomfort often associated with lordotic sitting postures.  相似文献   

15.
Relevance to industryThere is emerging evidence of musculoskeletal problems related to smartphone work and a rapid transition to mobile workplaces, where smartphones are key working tools. Aim: The study's aim was to compare muscle activity during computer work with smartphone work and to see what possible effects ergonomic recommendations for smartphone usage have on muscle activity.MethodsActivity was measured bilaterally from the upper trapezius muscle and from lower arm muscles on the right hand side, on twelve participants with surface electromyography who performed e-mail work on the computer using ergonomic recommendations, smartphone in a self-chosen way of working and on smartphone with ergonomic recommendations. Effects on productivity was not assessed in this study.ResultsActivity in m. trapezius and m. extensor digitorum was significantly higher during computer work (p < 0.05) than during the two smartphone usages and activity in m. interossei dorsalis 1 was, vice versa, significantly higher during smartphone work (p < 0.05). Comparison of smartphone in self-chosen way of working and smartphone with ergonomic recommendations showed no significant differences.ConclusionsPrevious research has highlighted the benefits of variation of work postures. This paper indicates that replacing the computer with a smartphone gives the trapezius muscle an opportunity to rest.  相似文献   

16.
ObjectiveEvaluate the influence of alternating the position of the upper limbs, between fully supported and unsupported forearms, in the Upper Trapezius (UT) activity during a typing task on a straight-edged desk.BackgroundErgonomic barriers, such as reduced desk area, is one of the reasons that force computer users to work without supporting their forearms. Unsupported forearms may lead to increased UT muscle fatigue, increasing the potential for lesions, with Trapezius Myalgia (TM) being a possible outcome.Method15 healthy volunteers were assessed (6 females, average age of 3,7 ± 9,5 years old). The protocol included an alternated position of forearms every 5 min between fully supported and unsupported forearms, with a 20-min total duration of a typing task. Surface electromyography readings were collected from both UTs.ResultsSignificant differences were found in the variation of the EMG signal between the two positions for the non-dominant arm after 10 min (p < .05) of typing. The non-dominant UT registered higher levels of activity than the dominant UT. Supported forearms reduced the electrical activity in both UTs, with a greater difference in the non-dominant.ConclusionThis study consolidates the current knowledge that unsupported upper limb during typing tasks significantly increases UT's electrical activity. By fully supporting the forearm, that activity is reduced. Females and the non-dominant UT showed higher electrical activity, potentially increasing the risk of developing TM.ApplicationHealthcare providers, safety and health professionals, and ergonomists should be mindful of the forearm position when advising computer users to prevent TM.  相似文献   

17.
Prolonged use of the smartphone for texting was studied on a sample of 17 healthy young adult participants (11 females), who were asked to type interactively on a handheld device while standing and sitting. Upper body kinematics ad upper trapezius surface EMG were recorded to capture parameters of joint kinematics and muscular activity, which were then compared with self-reported indicators of discomfort through the Borg's CR 10 scale questionnaire. The results indicated that, while showing a similar postural strategy in both conditions that is assumed to be controlled by the visual system to maintain a constant viewing distance from the device, the participants adopted a “stiffer” posture of the head and neck during standing than when sitting, with a direct correlation between upper trapezius muscle activity, neck angle and perceived discomfort. The evidence obtained in this study highlights the importance of monitoring muscle activity and head and neck kinematics, to assess the biomechanical risk factors of neuromuscular disorders associated with smartphone overuse.  相似文献   

18.
《Ergonomics》2012,55(10):1393-1404
Abstract

Background: The purpose of this study was to determine which office chair feature is better at improving spine posture in sitting. Method: Participants (n = 28) were radiographed in standing, maximum flexion and seated in four chair conditions: control, lumbar support, seat pan tilt and backrest with scapular relief. Measures of lumbar lordosis, intervertebral joint angles and sacral tilt were compared between conditions and sex. Results: Sitting consisted of approximately 70% of maximum range of spine flexion. No differences in lumbar flexion were found between the chair features or control. Significantly more anterior pelvic rotation was found with the lumbar support (p = 0.0028) and seat pan tilt (p < 0.0001). Males had significantly more anterior pelvic rotation and extended intervertebral joint angles through L1–L3 in all conditions (p < 0.0001). Conclusion: No one feature was statistically superior with respect to minimising spine flexion, however, seat pan tilt resulted in significantly improved pelvic posture.

Practitioner Summary: Seat pan tilt, and to some extent lumbar supports, appear to improve seated postures. However, sitting, regardless of chair features used, still involves near end range flexion of the spine. This will increase stresses to the spine and could be a potential injury generator during prolonged seated exposures.  相似文献   

19.
A postural evaluation during a prolonged driving task was conducted to determine the ergonomic validity of a new freely adjustable truck seat prototype. Twenty participants were recruited to perform two 2-h simulated driving sessions. Postures were assessed using motion capture, accelerometers and pressure pads. Subjective discomfort was also monitored in 15-min increments using ratings of perceived discomfort (RPD) and the Automotive Seating Discomfort Questionnaire. Participants had a more neutral spine posture during the first hour of the drive and reported lower RPDs while sitting in the prototype. Pairing the gluteal backrest panel with the adjustable seat pan helped reduce the average sitting pressure. The industry-standard truck seat may lead to the development of poor whole body posture, and the proposed ergonomic redesign of a new truck seat helped improve sitting posture and reduce perceived discomfort.

Practitioner Summary: A new freely adjustable truck seat prototype was compared to an Industry standard seat to assess hypothesised improvements to sitting posture and discomfort for long haul driving. It was found that the adjustable panels in the prototype helped promote spine posture, reduce sitting pressure and improved discomfort ratings.  相似文献   


20.
The efficiency of suspension seat can be influenced by several factors such as the input vibration, the dynamic characteristics of the seat and the dynamic characteristics of the human body. The objective of this paper is to study the effect of sitting postures and vibration magnitude on the vibration transmissibility of a suspension system of an agricultural tractor seat. Eleven (11) healthy male subjects participated in the study. All subjects were asked to sit on the suspension system. Four (4) different sitting postures were investigated – i) “relax”, ii) “slouch”, iii) “tense”, and iv) “with backrest support”. All subjects were exposed to random vertical vibration in the range of 1–20 Hz, at three vibration magnitudes - 0.5, 1.0 and 2.0 m/s2 r.m.s for 60 s. The results showed that there were three pronounced peaks in the seat transmissibility, with the primary resonance was found at 1.75–2.5 Hz for every sitting postures. The “backrest” condition had the highest transmissibility resonance (1.46), while the “slouch” posture had the highest Seat Effective Amplitude Transmissibility (SEAT) values (64.7%). Changes in vibration magnitude for “relax” posture from 0.5 to 2.0 m/s2 r.m.s resulted in greater reduction in the primary resonance frequency of seat transmissibility. The SEAT values decreased with increased vibration magnitude. It can be suggested that variations in posture and vibration magnitude affected the vibration transmission through the suspension system, indicating the non-linear effect on the interaction between the human body and the suspension system.Relevance to industry: Investigating the posture adopted during agricultural activities, and the effects of various magnitudes of vibration on the suspension system's performance are beneficial to the industry. The findings regarding their influence on the human body may be used to optimize the suspension system's performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号