首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lifting and lowering are common occupational tasks contributing to shoulder injury risk. Quantifying task interaction with physical demand can precipitate better workstation designs. Nineteen university-aged males performed one-handed, submaximal upward/downward manual force exertions at 70 hand locations; unilateral electromyography (EMG) of 14 muscles was recorded. EMG across planes was evaluated with ANOVA. Predictive equations for muscle activity throughout the reach envelope were developed with stepwise regression. Total muscle activity (sum of individual muscle activity) was most sensitive to vertical hand location for upward exertions, where activation at superior locations was 192% of values for inferior locations. For upward exertions, activation differences for hand location occurred along all anatomical axes, and along anterior/posterior and superior/inferior axes for downward exertions. Predictive equations were non-linear, reflecting complex muscular demand with three-dimensional hand location. This work details foundational exposure data for lifting/lowering exertions. Results are applicable to workstation design to minimise occupational shoulder muscular demands.

Practitioner Summary: Lifting and lowering in the workplace contribute to shoulder injury risk. Shoulder muscle activity magnitudes revealed a dependence on three-dimensional hand location in the reach envelope for a defined hand force. This information can inform evidence-based workstation designs that reduce shoulder muscular demands for numerous materials handling scenarios.  相似文献   


2.
Work related MusculoSkeletal Disorders (WMSDs) are injuries or dysfunctions caused by occupational or non occupational tasks involving bad postures, high frequency of exertions or high force levels. In the present study, the effects of shoulder flexion/extension combined with elbow flexion angle on discomfort score were investigated for repetitive gripping task. A laboratory experimental simulation was conducted. Ten male participants volunteered in this study. Four levels of shoulder flexion/extension (−45° extension, 0° neutral, 45° & 90° flexion) with three levels of elbow flexion angle (45°, 90° & 135°) were taken as levels of independent variables. There were 12 combinations available for each participant and the experiment was conducted on the basis of random order of experimental combinations for each participant. Discomfort score on 100 mm visual analogue scale (VAS) and Electromyography (EMG) activity of Extensor Carpi Radialis Brevis (ECRB) muscle were dependent variables for the analyses. The task for the experiment was of 150N ± 5N grip force at a frequency of 15 exertions/minute for five minutes duration. After performing the MANOVA on the recorded data, the results showed that the shoulder flexion/extension and elbow flexion both were highly significant (p < 0.001). Also it was found that −45° shoulder extension combined with 45° elbow flexion angle was the most discomfort posture. The practical relevance of the study is that, in industrial tasks such posture should be avoided to minimize risk of WMSDs.Relevance to industryThe findings in terms of relationship between discomfort/EMG vs. shoulder rotation combined with elbowflexion are important to design Industrial tasks with the reduced risk of WMSDs. Such as, sheet metal cutting, fabrication of sheet metal work, die casting, and drilling operations may require the shoulder movements in extenion/flexion combined with elbowflexion.  相似文献   

3.
《Ergonomics》2012,55(1):83-91
Overhead work has established links to upper extremity discomfort and disorders. As many jobs incorporate working overhead, this study aimed to identify working conditions requiring relatively lower muscular shoulder load. Eleven upper extremity muscles were monitored with electromyography during laboratory simulations of overhead work tasks. Tasks were defined with three criteria: work configuration (fixed, stature-specific); target angle (?15°, 0°, 15°, 30° from vertical); direction of applied hand force (pulling backwards, pushing forwards, downwards, sideways, upwards). Normalised electromyographic activity was greater for fixed configurations, particularly when pulling in a backward direction (total activity = 108.3% maximum voluntary exertion (MVE)) compared to pushing down or forward (total activity ranging from 10.5 to 17.3%MVE). Further, pulling backwards at angles of –15° and 0° showed the highest muscular demand (p < 0.05). These results suggest that, if possible, positioning overhead work in front of the body with exertions directed forwards will result in the lowest upper extremity muscle demand.

Statement of Relevance: Overhead work pervades occupational settings and is associated with risk of upper extremity musculoskeletal disorders. The muscular intensity associated with performing overhead work was assessed in several combinations of work placement and hand force direction. These findings should have utility for designing overhead work tasks that reduce muscular exposure.  相似文献   

4.
Given a task posture, changes in hand force magnitude and direction with regard to joint locations result in variations in joint loads. Previous work has quantified considerable vertical force components during push/pull exertions. The objective of this work was to quantify and statistically model actual hand forces in two-hand, standing exertions relative to the required nominal horizontal and vertical hand forces for a population of widely varying stature and strength. A total of 19 participants exerted force on a fixed handle while receiving visual feedback on the magnitude of force exerted in the required horizontal or vertical direction. A set of regression equations with adjusted R(2) values ranging from 0.20 to 0.66 were developed to define actual hand force vectors by predicting off-axis forces from the required hand force magnitude. Off-axis forces significantly increase the overall magnitude of force exerted in two-hand push/pull and up/down standing force exertions. STATEMENT OF RELEVANCE: This study quantifies and statistically models actual hand forces in two-hand, standing exertions. Inaccuracies in hand force estimates affect the ability to accurately assess task-oriented strength capability. Knowledge of the relationship between nominal and actual hand forces can be used to improve existing ergonomic analysis tools, including biomechanical simulations of manual tasks.  相似文献   

5.
Shoulder musculoskeletal disorders (MSD) are frequently associated with the work activities that demand forceful arm exertions in pushing and pulling directions. Considering the ability of shoulder joint to exert forces in nearly any direction, our understanding of the shoulder muscles activation as affected by pushing and pulling exertions is limited. In this study the activation of seven shoulder muscles were studied for 10 male participants during pulling exertions performed in five directions (pull right, pull left, pull back, pull down and pull up) using three force levels (22.24 N, 33.36 N and 44.48 N). Exertions performed in pulling right and pulling up directions produced higher activation and received higher perceived exertion ratings than the exertions performed in the other directions. Rotator cuff and middle deltoid muscles activation were consistently higher during pulling up and pulling right exertions compared to the other muscles. A high correlation was found between the activation of rotator cuff and deltoid muscles and the perceived exertion ratings. The rotator cuff and middle deltoid muscles activation observed during the pulling up and pulling right exertions can be explained by the concavity compression mechanism which stabilizes the glenohumeral joint of shoulder.Relevance to industryThe muscle activation data expressed in terms of Maximum Voluntary Contraction (MVC) and perceived exertion ratings are widely used by the ergonomic practitioners to design and/or evaluate workplace exertions. This study provides such data for several shoulder muscles during pulling exertions performed under different conditions.  相似文献   

6.
Pushing and pulling account for nearly half of all manual material handling tasks. The purpose of this investigation was to develop a 3-D spatial muscle activity map for the right upper extremity during pushing and pulling tasks. Nineteen males performed 140 ramped directional hand exertions (70 push; 70 pull) at locations along three axes aligned with the anatomical planes. Electromyography (EMG) of 14 sites on the right upper extremity was recorded. Two directional 3-way repeated measures ANOVAs assessed the influence of hand position on EMG. Hand position and exertion direction influenced total and individual muscle demand. During pulling exertions, all three hand location parameters influenced total muscle activity (p < 0.001) and similarly in pushing exertions (p < 0.002), though less pronounced than in pulling. Data were used to create equations to predict the muscle activity of untested hand locations for novel work design scenarios.  相似文献   

7.
《Ergonomics》2012,55(4):667-681
Environmental obstructions that workers encounter can kinematically limit the postures that they can achieve. However, such obstructions can also provide an opportunity for additional support by bracing with the hand, thigh or other body part. The reaction forces on bracing surfaces, which are in addition to those acting at the feet and task hand, are hypothesised to improve force exertion capability, and become required inputs to biomechanical analysis of tasks with bracing. The effects of kinematic constraints and associated bracing opportunities on isometric hand force were quantified in a laboratory study of 22 men and women. Analyses of one-hand maximal push, pull and lift tasks demonstrated that bracing surfaces available at the thighs and non-task hand enabled participants to exert an average of 43% more force at the task hand. Task hand force direction deviated significantly from the nominal direction for exertions performed with bracing at both medium and low task hand locations.

Practitioner summary: This study quantifies the effect of bracing on kinematically constrained force exertions. Knowledge that appropriate bracing surfaces can substantially increase hand force is critical to the evaluation of task-oriented strength capability. Force estimates may also involve large off-axis components, which have clear implications for ergonomic analyses of manual tasks.  相似文献   

8.
Greig M  Wells R 《Ergonomics》2008,51(8):1238-1257
The purpose of this study was to systematically explore and describe the response of selected hand and forearm muscles during a wide range of static force and moment exertions. Twenty individuals with manual work experience performed exertions in power grip, pulp pinch and lateral pinch grips. Electromyography (EMG) from eight sites of the hand and forearm, grip force as well as ratings of perceived exertion (RPE) were monitored as each participant exerted approximately 350 short (5 s) static grip forces and external forces and moments. As expected, strong relationships were found between grip force alone without other actions and muscle activation. When the hand was used to grip and transmit forces and moments to the environment, the relationships between grip force and muscle activation were much weaker. Using grip force as a surrogate for forearm and hand tissue loading may therefore be misleading.  相似文献   

9.
《Ergonomics》2012,55(8):1238-1257
The purpose of this study was to systematically explore and describe the response of selected hand and forearm muscles during a wide range of static force and moment exertions. Twenty individuals with manual work experience performed exertions in power grip, pulp pinch and lateral pinch grips. Electromyography (EMG) from eight sites of the hand and forearm, grip force as well as ratings of perceived exertion (RPE) were monitored as each participant exerted approximately 350 short (5 s) static grip forces and external forces and moments. As expected, strong relationships were found between grip force alone without other actions and muscle activation. When the hand was used to grip and transmit forces and moments to the environment, the relationships between grip force and muscle activation were much weaker. Using grip force as a surrogate for forearm and hand tissue loading may therefore be misleading.  相似文献   

10.
《Ergonomics》2012,55(15):1749-1769
The purpose of this study was to examine the interfering effects of physical and mental tasks on shoulder isometric strength in different postures. Fifteen volunteers (seven women, eight men) performed a series of isometric shoulder exertions at 30°, 60° and 90° of both shoulder flexion and abduction alone and with the addition of a 30% grip force, a mental task (Stroop test) and both additional tasks simultaneously. The shoulder tasks were completed either at maximal intensity, or while maintaining a shoulder posture without any additional effort. Surface electromyography (EMG) from seven muscles of the shoulder girdle and shoulder moment were collected for each 6 s shoulder exertion. When normalized to maximum exertion, no differences were found between genders and no differences existed between conditions when subjects maintained each posture without exerted force. In the maximal shoulder exertion trials, an increase in shoulder angle (in either plane) resulted in an increase in EMG in most muscles, while shoulder moment decreased in flexion and remained constant in abduction. Shoulder moments and muscle activation were greatest in the shoulder exertion alone condition followed by adding a 30% grip and the Stroop test, with the addition of both tasks further reducing the exerted shoulder moment and EMG. However, muscle activity did not always decrease with shoulder strength and remained elevated, indicating a complex coactivation pattern produced by an interfering role of the tasks. Overall, it was found that a mental task can have the same or greater effect as a concurrent grip and should be considered when assessing muscular loading in the workplace, as typical biomechanical modelling may underestimate internal loads. The results not only provide valuable shoulder strength data but also practical strength values, depending on additional tasks.  相似文献   

11.
《Ergonomics》2012,55(3):336-343
Direction of loading and performance of multiple tasks have been shown to elevate muscle activity in the upper extremity. The purpose of this study was to evaluate the effects of gripping on muscle activity and applied force during pushing and pulling tasks with three forearm postures. Twelve volunteers performed five hand-based tasks in supinated, neutral and pronated forearm postures with the elbow at 90° and upper arm vertical. All tasks were performed with the right (dominant) hand and included hand grip alone, push and pull with and without hand grip. Surface EMG from eight upper extremity muscles, hand grip force, tri-axial push and pull forces and wrist angles were recorded during the 10 s trials. The addition of a pull force to hand grip elevated activity in all forearm muscles (all p < 0.017). During all push with grip tasks, forearm extensor muscle activity tended to increase when compared with grip only while flexor activity tended to decrease. Forearm extensor muscle activity was higher with the forearm pronated compared with neutral and supinated postures during most isolated grip tasks and push or pull with grip tasks (all p < 0.017). When the grip dynamometer was rotated so that the push and pull forces could act to assist in creating grip force, forearm muscle activity generally decreased. These results provide strategies for reducing forearm muscle loading in the workplace.

Statement of Relevance: Tools and tasks designed to take advantage of coupling grip with push or pull actions may be beneficial in reducing stress and injury in the muscles of the forearm. These factors should be considered in assessing the workplace in terms of acute and cumulative loading.  相似文献   

12.
OBJECTIVE: The effects of handle friction and torque direction on muscle activity and torque are empirically investigated using cylindrical handles. BACKGROUND: A torque biomechanical model that considers contact force, friction, and torque direction was evaluated using different friction handles. METHODS: Twelve adults exerted hand torque in opposite directions about the long axis of a cylinder covered with aluminum or rubber while grip force, torque, and finger flexor electromyography (EMG) were recorded. In addition, participants performed grip exertions without torque, in which they matched the EMG level obtained during previous maximum torque exertions, to allow us to determine how grip force was affected by the absence of torque. RESULTS: (a) Maximum torque was 52% greater for the high-friction rubber handle than for the low-friction aluminum handle. (b) Total normal force increased 33% with inward torque (torque applied in the direction fingertips point) and decreased 14% with outward torque (torque in the direction the thumb points), compared with that with no torque. Consequently, maximum inward torque was 45% greater than maximum outward torque. (c) The effect of torque direction was greater for the high-friction rubber handle than for the low-friction aluminum handle. CONCLUSION: The results support the proposed model, which predicts a large effect of torque direction when high-friction handles are gripped. APPLICATION: Designing tasks with high friction and inward rotations can increase the torque capability of workers of a given strength, or reduce required muscle activities for given torque exertions, thus reducing the risk of fatigue and musculoskeletal disorders.  相似文献   

13.
Pushing and pulling tasks are increasingly prevalent in industrial workplaces. Few studies have investigated low-back biomechanical risk factors associated with pushing, and we are aware of none that has quantified spinal stability during pushing exertions. Data recorded from 11 healthy participants performing isometric pushing exertions demonstrated that trunk posture, vector force direction of the applied load, and trunk moment were influenced (p < .01) by exertion level, elevation of the handle for the pushing task, and foot position. A biomechanical model was used to analyze the posture and hand force data gathered from the pushing exertions. Model results indicate that pushing exertions provide significantly (p < .01) less stability than lifting when antagonistic cocontraction is ignored. However, stability can be augmented by recruitment of muscle cocontraction. Results suggest that cocontraction may be recruited to compensate for the fact that equilibrium mechanics provide little intrinsic trunk stiffness and stability during pushing exertions. If one maintains stability by means of cocontraction, additional spinal load is thereby created, increasing the risk of overload injury. Thus it is important to consider muscle cocontraction when evaluating the biomechanics of pushing exertions. Potential applications of this research include improved assessment of biomechanical risk factors for the design of industrial pushing tasks.  相似文献   

14.
Muscle fatigue is a significant cause of musculoskeletal injury and can easily induce unsafe behaviour. Push-type work is a common type of physical work, and if not designed appropriately, may lead to muscle fatigue. Previous studies on muscle fatigue mainly focus on investigating continuous force exertion, and in most of them, a constant muscle force is assumed, thereby ignoring the fluctuations present in exertion. In this study, bolt hole drilling was chosen to represent typical push-type work, and the muscle fatigue from this work was examined. The experimental system designed in this study monitored the muscle force in real time. In the experiments, different thrust angles (15°, 45°, and 75°), different relative force values (20% MVC, 40% MVC, and 60% MVC; MVC: maximum voluntary contraction) and different working time intervals (0 s, 30 s, 60 s, and 90 s) were considered. The results demonstrate that there is a significant positive correlation between the rating of perceived exertion (RPE) and muscle force attenuation (r = 0.786, p = 0). The cubic regression model (Y = − 0.00071x3 − 0.024x2 − 0.334x + 1.146, R2 = 0.639) fits the data most closely. Therefore, force attenuation can be used as a real-time indicator of muscle fatigue. In addition, the relative force value and thrust angle have a significant impact on the RPE score, whereas the working time interval has no major effect on it. This study provides a new method for evaluating muscle fatigue and a basis for the design of push-type work to reduce fatigue-induced accidents and musculoskeletal injuries.  相似文献   

15.
Hand force data is critical in evaluating work-related musculoskeletal disorders (WMSDs). Nevertheless, earlier studies on oil palm workers relied on estimated or laboratory measurements, which may not accurately reflect the actual hand forces. This study is the first report on the field measurement of hand forces for palm oil harvesters using a chisel and sickle to harvest low and tall palm trees, respectively. The dynamic hand forces and ground reaction forces were measured using instrumented harvesting tools and force plates, while wearable motion (IMU) and electromyography (EMG) sensors were incorporated for quantifying postural angles and muscle activations, respectively. Additionally, the spinal loadings, continuous Rapid Entire Body Assessment (REBA) scores, and subjective pain scores were determined to evaluate the risk of WMSDs. A total of 10 harvesters were recruited to perform the palm pruning tasks using a chisel and sickle. Resultantly, the sickle and chisel recorded a maximum cutting force of 1601.23 ± 424.26 N and 420.80 ± 96.00 N, respectively. All pruning tasks were found to be highly risky to harvesters, with a peak REBA score of 12. Likewise, all investigated muscles were activated for over 40% MVC, thus inducing moderate pain in the muscles. The peak L5-S1 compression forces for all tasks exceeded the safety threshold (>3400 N), but the values were not significantly different. The shear force of the L5-S1 was extreme in pruning with a sickle (1446.10 ± 411.00 N) compared to using a chisel. In conclusion, palm harvesters were at a high risk of developing WMSDs following poor postures, high physical exertion and muscle activity, and excessive spinal loads.  相似文献   

16.
Despite substantial epidemiological evidence relating overhead exertions with work‐related musculoskeletal disorders (WMSD) of the neck, effects of such exertions on the loading of neck or cervical spine musculature are not well understood. In this study, the effects of overhead pushing and pulling exertions on the loading of the cervical spine were evaluated using electromyography (EMG) and subjective discomfort ratings. Additionally, the role of gender as well as individual strength on the loading of neck musculature during such exertions was evaluated. Twenty‐four healthy individuals (12 men and 12 women) participated in this study. Each participant performed overhead pushing and pulling exertions, exerting 25%, 50%, and 75% of their respective maximum strengths. Overhead pushing exertions were found to be significantly more strenuous to the neck musculature than were the pulling exertions. Gender had no significant effect on the activities of the neck muscles. Participants with high strength, however, were able to exert more force at comparatively low muscle activation levels. Subjective discomfort ratings were strongly correlated with the EMG data. At various workplaces, avoiding overhead exertions is rather impossible due to material, interface, and site constraints. Based on the results of this study, however, during such exertions, an interchange between directions of force application could prevent sustained loading of the neck muscles, fatigue, and consequently the probability of neck WMSD incidents. © 2011 Wiley Periodicals, Inc.  相似文献   

17.
《Ergonomics》2012,55(12):1841-1849
Objective: This paper describes the development and application of a novel multi-axis hand dynamometer for quantifying 2D grip force magnitude and direction in the flexion-extension plane of the fingers. Methods: A three-beam reconfigurable form dynamometer, containing two active beams for measuring orthogonal forces and moments regardless of point of force application, was designed, fabricated and tested. Maximum grip exertions were evaluated for 16 subjects gripping cylindrical handles varying in diameter. Results: Mean grip force magnitudes were 231 N (SD = 67.7 N), 236 N (72.9 N), 208 N (72.5 N) and 158 N (45.7 N) for 3.81 cm, 5.08 cm, 6.35 cm and 7.62 cm diameter handles, respectively. Grip force direction rotated clockwise and the centre of pressure moved upward along the handle as handle diameter increased. Conclusions: Given that the multi-axis dynamometer simultaneously measures planar grip force magnitude and direction, and centre of pressure along the handle, this novel sensor design provides more grip force characteristics than current sensor designs that would improve evaluation of grip characteristics and model-driven calculations of musculoskeletal forces from dynamometer data.  相似文献   

18.
Among the shoulder musculoskeletal disorders (MSDs), rotator cuff disorders are prevalent and known to substantially limit an individual's strength and ability to work. Despite the frequency and cost of rotator cuff injuries, very little research has been done on understanding the load response relationship of rotator cuff muscles. Therefore, this study was aimed at evaluating the strength, endurance and fatigue response of rotator cuff muscles. As a first step, strengths of Supraspinatus, Infraspinatus, and Teres Minor were measured for ten healthy male participants using muscle specific Maximum Voluntary Contractions (MVC). Then, endurance time and surface Electromyography (EMG) data were recorded during 15%, 30%, 45%, and 60% MVC exertions. Infraspinatus exhibited the highest strength followed by Teres Minor and Supraspinatus. Despite the strength differences, small variations were observed in the endurance time between the muscles. The effect of %MVC exertions on endurance time, average muscle activity and muscle fatigue were statistically significant. Median frequency decreased and muscle activation increased with an increase in force exertion levels; however, the changes observed for an increase in the exertion level from 15% to 30% MVC were much higher than the changes observed for an increase in the exertion level from 45% to 60% MVC.Relevance to industryResults of this study indicate that the rotator cuff muscles have different strengths but exhibit very similar endurance and fatigue behavior. These findings can assist ergonomic practitioners with the design and/or evaluation of workplace upper extremity exertions to reduce/manage stress on the rotator cuff muscles and shoulder.  相似文献   

19.
《Ergonomics》2012,55(1):41-58
Prehensile grasp capability is typically quantified by pinch and grasp forces. This work was undertaken to develop a methodology to assess complex, multi-axis hand exertions through the measurement of forces and moments exerted by the hand along and about three orthogonal axes originating at the grip centre; termed an external wrench. Instrumentation consisting of a modified pinch/grip dynamometer affixed to a 6?df force cube was developed to simultaneously measure three forces, three moments and the pinch/grip force about the centre of the grip. Twenty right hand dominant manual workers (10 male and 10 female), free of hand or wrist disorders, completed a variety of maximal strength tasks. The randomized block design involved three separate grips?–?power grip, lateral pinch and pulp pinch. Randomized within each block were three non-concurrent repetitions of isolated maximal force and moment generations along and about the three principle orthogonal axes and a maximal grip force exertion. Trials were completed while standing, with the arm abducted and elbow flexed to 90° with a wrist posture near neutral. Where comparable protocols existed in the literature, forces and moments exerted were found to be of similar magnitude to those reported previously. Female and male grip strengths on a Jamar dynamometer were 302.6?N and 450.5?N, respectively. Moment exertions in a power grip (female and male) were 4.7 Nm and 8.1 Nm for pronator, 4.9 Nm and 8.0 Nm for supinator, 6.2 Nm and 10.3 Nm for radial deviator, 7.7 Nm and 13.0 Nm for ulnar deviator, 6.2 Nm and 8.2 Nm for extensor, and 7.1 Nm and 9.3 Nm for flexor moments. Correlations with and between maximal force and moment exertions were only moderate. This paper describes instrumentation that allows comprehensive characterization of prehensile force and moment capability.  相似文献   

20.
《Ergonomics》2012,55(4):682-691
The purpose of this experiment was to quantify the natural angle between the hand and a handle, and to investigate three design factors: handle rotation, handle tilt and between-handle width on the natural angle as well as resultant wrist radial/ulnar deviation (‘RUD’) for pushing tasks. Photographs taken of the right upper limb of 31 participants (14 women and 17 men) performing maximal seated push exertions on different handles were analysed. Natural hand/handle angle and RUD were assessed. It was found that all of the three design factors significantly affected natural handle angle and wrist RUD, but participant gender did not. The natural angle between the hand and the cylindrical handle was 65 ± 7°. Wrist deviation was reduced for handles that were rotated 0° (horizontal) and at the narrow width (31 cm). Handles that were tilted forward 15° reduced radial deviation consistently (12–13°) across handle conditions.

Practitioner summary: Manual materials handling (MMH) tasks involving pushing have been related to increased risk of musculoskeletal injury. This study shows that handle orientation influences hand and wrist posture during pushing, and suggests that the design of push handles on carts and other MMH aids can be improved by adjusting their orientation to fit the natural interface between the hand and handle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号