首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的 对比研究HiPIMS和DCMS技术对涂层组织、结构与性能的影响,为不同磁控溅射技术制备硬质涂层提供理论依据与实验指导。方法 在相同功率密度下,通过HiPIMS和DCMS技术分别制备 TiSiN 涂层。通过X射线衍射仪(XRD)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、扫描探针显微镜(SPM)表征涂层的结构和形貌,并通过纳米压痕仪、划痕仪、UMT-3摩擦磨损试验机、电化学工作站表征涂层的力学、摩擦学和耐腐蚀性能。结果 与DCMS制备的TiSiN涂层相比,HiPIMS技术所制备的涂层表面更加光滑,结构更为致密,硬度提高了10%,且应力降低了35%,呈低应力高硬度特征,涂层的韧性和结合力也明显提高,膜基结合力由DCMS涂层的40 N提高至50 N。同时,涂层的耐磨和耐腐蚀性能得到提升,摩擦系数降低了18%,腐蚀电流密降低了将近1个数量级。结论 与DCMS 相比,HiPIMS技术在制备TiSiN纳米复合涂层上具有显著优势,有效提高了涂层的综合使役性能。  相似文献   

2.
Due to severe operating conditions and long lifetime requirements for mechanical components, the great challenge is to develop coatings with anti-wear and high load support capability. The designs for nanocomposite protective coatings are very promising and provide an attractive alternative to take into account the multilayer architecture. In this work, a-C(Al)-based nc-TiC/a-C(Al), nc-CrC/a-C(Al) and nc-WC/a-C(Al) nanocomposites were constructed by Cr/CrN/CrCN multilayer. The microstructure, mechanical properties, friction and wear behaviors for these multilayer coatings were systemically investigated. Results showed that the top-layered nc-TiC/a-C(Al), nc-CrC/a-C(Al) and nc-WC/a-C(Al) nanocomposites were dominated by typically nanocrystallite/amorphous microstructure, and these nanocomposites constructed by multilayer approach presented superior mechanical properties which possessed relatively high hardness, low internal stress as well as high adhesion strength. Particularly, the as-fabricated nc-TiC/a-C(Al), nc-CrC/a-C(Al) and nc-WC/a-C(Al) multilayer coatings exhibited superior anti-wear capability under relatively high applied Hertzian contact pressure compared to corresponding monolayer coatings. The improvement in friction and wear performances of as-fabricated multilayer coatings was mainly attributed to superior mechanical properties and formation of graphitized tribofilm as well as high load support capability by multilayer architecture, indicating that these coatings might be good candidates as solid lubrication materials in engineering applications.  相似文献   

3.
Nanocrystalline titanium carbide embedded in an hydrogenated amorphous carbon matrix (nc-TiC/a-C:H) shows high hardness and Young's modulus together with low wear and low friction coefficient. In this paper, we report on the preparation of well adherent nc-TiC/a-C:H coatings ~ 5 μm thick on stainless steel substrates using a well balanced magnetic field configuration and only very low power RF bias on the substrate. Hardness and Young's modulus of these coatings are 43 GPa and 380 GPa, respectively. The mechanical properties – hardness and Young's modulus – measured from the coating's top reach the values obtained at optimized experiments where the unbalanced magnetic field configuration was used. A simple method of depth profiling suitable for evaluation of mechanical properties of several micrometers thick coatings is developed and employed. The paper reports on the depth profile analyses of the coating hardness, Young's modulus, composition and morphology.  相似文献   

4.
采用不同偏压闭合场非平衡磁控溅射技术在镁合金表面沉积Cr-N镀层,分别对镀层的组织结构、厚度、结合性能和摩擦磨损性能进行了表征和分析。结果表明,镀层主要由Cr(N)相和少量Cr2N相组成。在偏压为60V时镀层具有较高的硬度、良好的结合性能和摩擦磨损性能。偏压进一步升高,虽然镀层硬度有所提高,但结合性能和抗磨性能均下降。  相似文献   

5.
The amorphous carbon coatings of a-C and a-C:H type were deposited by pulsed magnetron sputtering in argon and argon/acetylene atmosphere, respectively. The deposition rate, chemical composition, structure and mechanical properties of these coatings were studied as a function of acetylene flow rate. The adding of acetylene to working atmosphere caused increase of deposition rate and hydrogen content in coatings, and at the same time decrease in their hardness. The friction and wear behaviour of a-C and a-C:H coatings in ambient air are highly dependent on kind of counterparts material. The “true” friction coefficients of a-C and a-C:H coatings sliding against a-C and a-C:H coatings, respectively, are similar in values (0.06-0.08) and wear rates are similar too. Significantly higher friction coefficients (0.2-0.3) and wear rates were observed for both a-C and a-C:H coatings sliding against 100Cr6 steel. The lowest friction coefficients (0.02-0.04) and wear rates were obtained for a-C and a-C:H coatings sliding against Alumina counterpart.  相似文献   

6.
目的 比较直流磁控溅射(DCMS)和高功率磁控溅射(HiPIMS)两种沉积技术制备的氮化铬(CrN)薄膜的结构和性能。方法 采用DCMS和HiPIMS沉积技术,在金属镍(Ni)基底上沉积CrN薄膜,采用X射线衍射(XRD)、扫描电镜(SEM)和显微硬度计等仪器,分析CrN薄膜的晶相结构、表面以及截面形貌、基底与薄膜复合硬度、摩擦性能等。结果 XRD晶体测量显示DCMS制备的CrN薄膜在(111)晶面择优生长,内应力大;而HiPIMS制备的CrN薄膜为(200)晶面择优生长,内应力小。SEM显示两种方法制备的CrN薄膜都呈柱状晶体结构生长,但HiPIMS沉积的CrN薄膜颗粒尺寸较小,柱状晶体结构和晶粒更致密。硬度测量得到HiPIMS制备的CrN薄膜显微硬度为855.9HV,而DCMS制备的CrN薄膜显微硬度为501.5HV。此外,DCMS制备的CrN薄膜平均摩擦系数为0.640,而HiPIMS制备的CrN薄膜摩擦系数为0.545,耐磨性也好。HiPIMS制备的CrN薄膜的腐蚀电流比DCMS制备的CrN薄膜低1个数量级。结论 HiPIMS沉积技术制备的CrN薄膜颗粒尺寸小,结构更致密,且缺陷少、硬度高、防腐蚀性好,薄膜各项指标都优于DCMS沉积的CrN薄膜。  相似文献   

7.
铝挤压模具表面的摩擦磨损行为是影响铝制品质量和模具寿命的重要因素。为了进一步优化铝挤压模具表面耐磨涂层的沉积工艺,以 TiN 涂层为例,采用等离子体增强磁控溅射方法分别在基体偏流为 0.1 A、1.5 A、3.0 A 和 4.5 A 条件下制备 TiN 涂层,利用 XPS、SEM、AFM 和 XRD 分别测量 TiN 涂层的化学成分、表截面微观结构和相组成,利用纳米压痕仪和旋转式球-盘摩擦磨损试验机分别考察 TiN 涂层试样的综合力学性能和与铝对摩时的摩擦磨损行为。结果表明:基体偏流增加对 TiN 涂层的化学组成影响较小。随着基体偏流的增加,TiN 涂层的横截面形貌逐渐细化。涂层表面具有由岛状微凸起组成的微结构,随着基体偏流的增加,微凸起尺寸和数量逐渐减小,表面粗糙度逐渐降低。不同基体偏流条件下制备的涂层均具有明显的 TiN(111)择优生长趋势。当基体偏流从 0.1 A 增加到 1.5 A 时,TiN 涂层的晶粒尺寸明显减小,涂层的综合力学性能得到显著提高。TiN 涂层试样与铝对摩过程中主要发生粘着磨损和磨料磨损,涂层试样对铝的减摩抗磨性能与对摩过程中的铝粘着面积呈负相关。结论:基体偏流对等离子体增强磁控溅射 TiN 涂层的表截面微观结构、力学性能和摩擦磨损行为影响显著,基体偏流为 1.5 A 时制备的 TiN 涂层具有最低的摩擦因数和磨损率,分别为 0.41×10?15 和 3.03×10?15 m3 / (N·m)。研究结果对铝成型模具表面高性能长寿命防护涂层的研究开发具有一定的理论意义和实用价值。  相似文献   

8.
目的 为了大幅提高机械零部件表面的硬度和耐磨性能,探究制备具有低摩擦因数、高硬度和良好耐磨性的MoCN涂层。方法 采用中频磁控溅射技术在不锈钢基板和硅片上,通过控制C2H2气体(纯度99.99%,0、3、6、9 mL/min)的量来制备具有不同含碳量的MoCN纳米复合涂层。通过X射线衍射仪和拉曼光谱仪分析涂层主要的物相结构,采用扫描电子显微镜(SEM)和原子力显微镜(AFM)表征涂层的表面和断面形貌。采用连续刚度法,利用纳米压痕仪测试涂层的纳米硬度和弹性模量。利用自动划痕试验机和光学显微镜(OM)评估涂层与基体之间的黏附强度。最后利用多功能摩擦磨损试验机进行磨损试验,通过SEM对试验后的涂层进行磨损形貌分析,并对涂层的摩擦学性能进行评价。结果 涂层微观组织和力学性能表征结果表明,MoCN涂层由MoN相和非晶态碳相组成。随着涂层中碳含量的增加,涂层与基体之间的结合力和涂层表面的粗糙度都呈现逐渐减小的趋势,其涂层的划痕失效临界载荷和表面粗糙度的最小值分别为6.90 N和6.80 nm,但是涂层的纳米硬度从7.36 GPa增至10.23 GPa。摩...  相似文献   

9.
A gradient three-layer Al-Mo coating was deposited on steel using magnetron sputtering method. The corrosion and nano-mechanical properties of the coating were examined by electrochemical impedance spectroscopy and nano-indentation tests and compared with the conventional electroplated cadmium and IVD aluminum coatings. Electrochemical impedance spectroscopy was performed by immersing the coated specimens in 3.5% NaCl solution, and the impedance behavior was recorded as a function of immersion time. The mechanical properties (hardness and elastic modulus) were obtained from each indentation as a function of the penetration depth across the coating cross section. The adhesion resistance of the coatings was evaluated by scratch tests on the coated surface using nano-indentation method. The results show that the gradient Al-Mo coating exhibits better corrosion resistance than the other coatings in view of the better microstructure. The impedance results were modeled using appropriate electrical equivalent circuits for all the coated systems. The uniform, smooth and dense Al-Mo coating obtained by magnetron sputtering exhibits good adhesion with the steel substrate as per scratch test method. The poor corrosion resistance of the later coatings was shown to be due to the defects/cracks as well as the lesser adhesion of the coatings with steel. The hardness and elastic modulus of the Al-Mo coating are found to be high when compared to the other coatings.  相似文献   

10.
A series of WC/C nanostructured films with carbon contents ranging from 30 to 70 at.% was deposited on M2 steel substrates by magnetron sputtering of WC and graphite targets in argon. Depending on the amorphous carbon (a-C) incorporated in the coatings, nanocrystalline coating (formed mainly by WC1 − x and W2C phases) or nanocomposite (WC1 − x/a-C) were obtained with tunable mechanical and tribological properties. Ultrahardness values of 36–40 GPa were measured for the nanocrystalline samples whilst values between 16 and 23 GPa were obtained in the nanocomposite ones depending on the a-C content. The tribological properties were studied using a pin-on-disk tester versus steel (100Cr6) balls and 5 N of applied load in dry sliding conditions and the failure modes by scratch adhesion tests. Three different zones were identified according to the observed tribological behavior: I (μ > 0.8; adhesive wear), II (μ: 0.3–0.6; abrasive wear) and III (μ ~ 0.2; self-lubricated). The wear tracks and the ball scars were observed by scanning electron microscopy (SEM) and Raman spectroscopy in order to elucidate the tribochemical reactions appearing at the contact and to determine the wear mechanism present in each type. A correlation among structure, crystalline phases, a-C content and tribomechanical properties could be established for the series of WC/C coatings and extended to understand the trends observed in the literature for similar coatings.  相似文献   

11.
nc-TiC/a-C:H nanocomposite films were prepared by filtered cathodic arc technique. The influence of C2H2/Ar flow ratio on the composition, structure, and mechanical properties of films was investigated by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, nanoindentation, and ball-on-disc tribometry. The films show a nanocomposite structure in which TiC crystallites are embedded in the amorphous matrix of a-C:H phase. C content in films increases with the flow ratio of C2H2/Ar, simultaneously, the crystallite size of TiC decreases. Contrary to the nc-TiC/a-C:H films deposited by magnetron sputtering in which the sp3 C content increases with C2H2 flow rate, the increase of C2H2 flow rate leads to the increase of sp2 C content in films deposited by filtered cathodic arc technique. The nc-TiC/a-C:H films deposited by cathodic arc technique have a pronounced hardness maximum of 30 GPa under the C2H2/Ar flow ratio of 12. Tribological performance of films is controlled by the sp2 content in films. Higher sp2 content promotes the formation of graphite-like transfer layer during sliding, and results in lower wear rate and friction coefficient.  相似文献   

12.
采用UDP650型闭合场非平衡磁控溅射系统在硅片及316不锈钢基底表面制备了不同掺杂设计的类金刚石涂层(DLC、Cr/DLC和WC/DLC),通过SEM、Raman、硬度仪和划痕仪研究了涂层的结构及力学性能,利用多功能摩擦试验机考察了涂层在大气及海水环境下的摩擦学性能。结果表明,Cr或WC掺杂能显著促进DLC涂层的石墨化,同时提高涂层的结合力及韧性。在摩擦磨损试验中,由于海水的润滑作用,3种涂层在海水环境下的摩擦因数及磨损率均低于大气环境。同时,WC/DLC在3种涂层中表现出最佳的摩擦学性能,这取决于其高的石墨化程度,良好的结合力及优异的韧性。  相似文献   

13.
采用高功率脉冲磁控溅射(HiPIMS)技术在不同沉积温度下制备了Al-Cr-Si-N涂层。系统研究了沉积温度对涂层结构、成分、显微形貌、力学和摩擦学性能的影响。结果表明:随着沉积温度由100℃升至350℃,涂层内部开始由非晶向纳米晶转化,300℃时出现fcc-AlN相;涂层平整性和致密性逐步改善,膜/基结合强度逐渐提高,在300℃达到最大值77 N,但温度继续升高至350℃时,严重的轰击刻蚀作用使临界载荷骤降至25 N;涂层硬度逐渐增加,在350℃达到最大值19.4GPa;涂层内应力整体呈下降趋势,由–0.8 GPa逐渐降低至–0.4 GPa左右。  相似文献   

14.
A dual-magnetron system for deposition inside tubular substrates has been developed. The two magnetrons are facing each other and have opposing magnetic fields forcing electrons and thereby also ionized material to be transported radially towards the substrate. The depositions were made employing direct current magnetron sputtering (DCMS) and high power impulse magnetron sputtering (HiPIMS). To optimize the deposition rate, the system was characterized at different separation distances between the magnetrons under the same sputtering conditions. The deposition rate is found to increase with increasing separation distance independent of discharge technique. The emission spectrum from the HiPIMS plasma shows a highly ionized fraction of the sputtered material. The electron densities of the order of 1016 m− 3 and 1018 m− 3 have been determined in the DCMS and the HiPIMS plasma discharges respectively. The results demonstrate a successful implementation of the concept of sideways deposition of thin films providing a solution for coating complex shaped surfaces.  相似文献   

15.
This paper reports the combination of two mechanical tests on AlOx coatings on polymer film, of the kind that can be used for gas barrier layers: uniaxial fragmentation tests and nano-scratch tests. The resulting morphology of the film, as characterised by AFM at different points along the scratch test, is very informative of the nature of the coating failure, and combined with FTIR studies of the oxides can explain the observed differences in the quantitative mechanical tests. As an illustration of the capability of these methods to distinguish differences between coatings on the same substrate with the same nominal chemistry, a comparison between three AlOx coatings on polyethylene naphthalate (PEN) is made. The different films were produced in comparable conditions by direct current (DC) magnetron sputtering, radio frequency (RF) magnetron sputtering and high power impulse magnetron sputtering (HiPIMS). Clear differences were measured between the coatings. The DC film showed the greatest strain-to-failure, perhaps due to a more open structure indicated by FTIR, and the HiPIMS sample showed a less homogeneous, but better adhered, coating.  相似文献   

16.
On the film density using high power impulse magnetron sputtering   总被引:1,自引:0,他引:1  
The influence on thin film density using high power impulse magnetron sputtering (HiPIMS) has been investigated for eight different target materials (Al, Ti, Cr, Cu, Zr, Ag, Ta, and Pt). The density values as well as deposition rates have been compared to results obtained from thin films grown by direct current magnetron sputtering (DCMS) under the same experimental conditions. Overall, it was found that the HiPIMS deposited coatings were approximately 5-15% denser compared to the DCMS deposited coatings. This could be attributed to the increased metal ion bombardment commonly seen in HiPIMS discharges, which also was verified using a global plasma model to assess the degree of ionization of sputtered metal. One key feature is that the momentum transfer between the growing film and the incoming metal ions is very efficient due to the equal mass of film and bombarding species, leading to a less pronounced columnar microstructure. As expected the deposition rates were found to be lower for HiPIMS compared to DCMS. For several materials this decrease is not as pronounced as previously reported in the literature, which is shown in the case of Ta, Pt, and Ag with rateHiPIMS/rateDCMS ~ 70-85%, while still achieving denser coatings.  相似文献   

17.
为了研究纳米多层膜的耐腐蚀性能以及腐蚀磨损机理,采用离子源辅助磁控溅射在TC4钛合金表面制备不同调制周期的CrSiN/SiN纳米多层膜。使用扫描电子显微电镜、能谱仪表征涂层的微观结构、腐蚀形貌以及元素分布;使用划痕仪、纳米压痕仪、维氏硬度计测量涂层的膜基结合力、硬度、弹性模量及断裂韧性,采用电化学工作站以及销盘磨损仪测量涂层耐腐蚀性和腐蚀磨损性。结果表明:调制周期为90 nm与360 nm时涂层耐腐蚀性能较好,腐蚀电流密度分别为1.31×10~(-8)A·cm~(-2)和1.20×10~(-8)A·cm~(-2)。此外,调制周期为45nm时,涂层硬度及弹性模量最大,分别为(22.5±0.6)GPa和(226.4±6.3)GPa,且腐蚀磨损率最低,为9.67×10~(-7)mm~3·N~(-1)·m~(-1)。多层膜结构显著改善了TC4钛合金的耐腐蚀及腐蚀磨损性能。  相似文献   

18.
TiBCN nanocomposite coatings were deposited in a closed field unbalanced magnetron sputtering system using pulsed magnetron sputtering of a TiBC compound target with various Ar/N2 mixtures. TiBCN coatings were characterized using X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, nanoindentation, Rockwell C indentation and ball-on-disk wear tests. The coatings with a nitrogen content of less than 8 at.% exhibited superhardness values in the range of 44–49 GPa, but also showed poor adhesion and low wear resistance. Improvements in the coating adhesion, H/E ratio and wear resistance were achieved together with a decrease in the coating hardness to 35–45 GPa as the N content in the coatings was increased from 8 to 15 at.%. The microstructure of the coatings changed from a nano-columnar to a nanocomposite structure in which 5–8 nm nanocrystalline Ti(B,C) and Ti(N,C) compounds were embedded in an amorphous matrix consisting of BN, free carbon and CN phases. With a further increase in the N content in the coatings to levels greater than 20 at.%, the inter-particle spacing of the nanocrystalline compounds increased significantly due to the formation of a large amount of the amorphous BN phase, which also led to low hardness and poor wear resistance of the TiBCN coatings.  相似文献   

19.
Owing to increasing demands for reductions in emissions and improvements in fuel economy in the automotive industry, there is an urgent need to improve tribological performances of components. In the current paper, an nc-WC/a-C(Al) carbon-based nanocomposite coating was fabricated successfully via the magnetron sputtering process. The microstructure and mechanical properties of the as-fabricated nanocomposite coating were investigated. In particular, its friction and wear behaviors under poly-alpha-olefin oil lubricant added with anti-wear (AW), extreme-pressure (EP), or molybdenum dialkyldithiocarbamate (MoDTC) additive were systemically evaluated. Results show that the nc-WC/a-C(Al) nanocomposite coating has a typical nanocrystallite/amorphous microstructure and good mechanical properties. The significant improvement in the tribological performance of the boundary-lubricated nc-WC/a-C(Al) coating is mainly attributed to the WS2 or MoS2 + WS2-containing tribofilm when S-based EP or MoDTC additive was used. Superior tribological performance of nc-WC/a-C(Al) nanocomposite coating was achieved by lubricant/additive synergies, indicating its potential application as a protective coating for automotive tribo-components.  相似文献   

20.
Five different WC/C coatings deposited by physical vapour deposition (PVD) on high speed-steel (HSS) have been evaluated with respect to their mechanical and tribological properties. For all coatings a chromium layer was deposited first to enhance coating adhesion. The carbide phase (WC) and the carbon (C) phase were deposited simultaneously by direct-current magnetron sputtering of a WC target and plasma-assisted chemical vapour deposition using hydrocarbon gas, respectively. The influence of the chromium interface layer thickness, the amount of WC phase and the flow of hydrocarbon gas on the mechanical and tribological properties of the coatings have been investigated. The coatings have been characterised with respect to their chemical composition (glow discharge optical emission spectroscopy), hardness (Vickers microhardness), morphology (scanning electron microscopy, SEM), roughness (profilometry), residual stress (beam bending), critical load (scratch testing) and abrasive wear resistance (the “dimple grinder test”). Furthermore, a ball-on-plate test was employed to obtain information about the frictional properties and sliding wear resistance of the coatings. The wear mechanisms and wear debris were analysed by SEM, Auger electron spectroscopy and electron spectroscopy for chemical analysis. All WC/C coatings displayed a thickness between 2 and 4 μm and a surface roughness in the range of 10 to 70 nm. The hardness varied between 1500 and 1800 HV. The coating residual stress was found to range from −2.5 to −0.5 GPa. The scratch test revealed a relatively high critical normal load, i.e., a relatively good adhesion of the WC/C coatings to the HSS. The abrasive wear resistance was found to be very high, in fact equally as high as that of PVD TiN. In the sliding wear test it could be seen that the coating containing the lowest amount of carbide phase (WC), i.e., the highest amount of carbon phase (C), and which had the highest compressive residual stress yielded the lowest friction and wear rate against steel. In addition, this coating was also found to yield the lowest wear rate of the counter material. In summary, a WC/C coating with overall good mechanical and tribological properties was obtained provided a relatively thin chromium layer was deposited first and if a relatively high acetylene gas flow was utilised during deposition of the WC/C layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号