首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
现有的一分类支持向量机算法基于优化最小间隔的思想,只考虑了样本靠近空间原点一侧的噪声,对噪声信息较为敏感。针对该问题,通过优化间隔分布思想,同时考虑样本靠近空间原点和远离空间原点两侧的噪声,提高一分类支持向量机算法的抗噪声能力。为此,提出了一种基于最优间隔分布的一分类学习方法(one-class optimal margin distribution machine, OCODM),该方法通过最大化间隔的均值和最小化间隔方差的方式来优化间隔分布。实验结果表明,相比于现有的一分类支持向量机算法,该方法具有更好的鲁棒性,是现有一分类支持向量机方法的有益补充,能够增强现有方法的抗噪声能力。  相似文献   

2.
刘星  赵建印  朱敏  张伟 《控制与决策》2021,36(10):2379-2388
针对列装时间短的现役装备故障样本匮乏、现有算法故障检测准确率较低的问题,将多核学习(multiple kernel learning,MKL)与一类超限学习机(OC-ELM)相结合,提出$l_p$-范数约束下多核学习一类超限学习机($l_p$-MKOCELM)的检测模型.在$l_p$-范数约束下,定义了将MKL与OC-ELM相结合的数学优化形式,推导出基核组合权重与Lagrange乘子的更新方式;为方便故障检测的实施,基于$l_p$-MKOCELM定义了统计检验量与检测阈值;通过实验验证了不同范数的约束形式的近似等价性.将所提出方法应用于常用的UCI数据集和某型装备的测试数据,实验结果表明,相比于传统的SVDD、PCA、OC-SVM、OC-KELM等方法,所提出方法在平衡漏警、虚警的同时,能够显著提升检测精度.  相似文献   

3.
深度学习在我国农业中的应用研究现状   总被引:2,自引:0,他引:2  
深度学习(Deep Learning,DL)已广泛应用于智能农业的病虫害检测、植物和水果识别、农作物及杂草检测与分类等研究中。对2014年至2019年国内发表的65篇有关DL在农业中应用研究成果进行综述。简要介绍DL的基本概念及其发展历史,给出了所选论文检索方法及其分布;对所选论文从研究对象与目的、数据来源、类间差异、预处理、数据扩增、模型框架以及性能对比等角度进行了综述;对DL的优缺点进行了分析,并指明了其在智能农业研究中的发展趋势。  相似文献   

4.
    
Despite the big success of transfer learning techniques in anomaly detection, it is still challenging to achieve good transition of detection rules merely based on the preferred data in the anomaly detection with one-class classification, especially for the data with a large distribution difference. To address this challenge,a novel deep one-class transfer learning algorithm with domain-adversarial training is proposed in this paper. First, by integrating a hypersphere adaptation constraint into...  相似文献   

5.
多人在线战术竞技(MOBA)游戏是当前世界最流行的电子游戏类型之一,该类游戏涉及的知识领域相当复杂.随着电子竞技产业的飞速发展,数据分析对MOBA游戏的影响也越来越大,在对该类游戏的实时局势进行评价时,一般是选择过程变量作为指标,例如经济差、经验差,但目前缺少趋势预测的相关研究.针对该问题,提出一种基于序列到序列结构的MOBA游戏趋势预测模型(MOBA-Trend).在预处理阶段,针对该类游戏数据的特点,设计一种数据缩放算法体现数据间的重要度,并使用低通滤波器消除数据噪声;之后将双方阵容与历史战斗信息作为输入特征,构建带有注意力机制的序列模型,同时预测经济差、经验差;最后将模型应用于Dota 2,构建并发布相关数据集.实验结果表明,所提出的模型能够有效地预测序列的变化趋势.  相似文献   

6.
时序事件预测是指基于历史事件预测下一个事件,事件包括时间和类型两个属性.当前主要工作集中在单方面(事件时间或事件类型)的预测,但这无法回答\"何时发生何事\"这类更精细的问题.此类问题的挑战主要是事件类型非常多样,而行为往往高度稀疏,给预测带来极大困难;需要预测的事件时间和事件类型分属两个域,如何把这两个域的信息加以融合并形成互补也是一个挑战.针对上述挑战,从融合多序列隐信息的角度探索了一种解决方法.基于某些事件序列之间具有模式相似性这一观察,提出建模事件序列的隐关系图,利用邻居序列的信息解决行为稀疏性的问题;通过合理设计神经网络模块,将事件的时间域和类型域的信息映射到共同的抽象空间,解决事件时间和事件类型信息的融合建模问题.通过在多个真实数据集上进行了大量实验,实验结果印证了多序列深度时序模型优于现有的一系列基准模型.  相似文献   

7.
卷积神经网络(convolutional neural network, CNN)被广泛用于图像分类任务中。大多数现有的CNN模型都按照N路分类器的形式训练。然而,不同类别之间总存在差异性限制了N路分类器的分类能力。为了解决上述问题,提出的神经网络模型将混淆树结构(confusion tree, CT)和CNN模型结合,设计了性能更强的基于混淆树的卷积神经网络模型(confusion tree CNN,CT-CNN)。该模型首先建立一个混淆树来对类别之间的混淆性进行建模;然后,将混淆树的分层结构嵌入到CNN模型中,通过这种方式可以引导CNN的训练过程更加关注混淆性强的类别集合。该模型在公共数据集上进行了评估,实验结果证明,CT-CNN能克服大规模数据类别间的分类难度分布不均匀的局限,在复杂大规模的分类任务中取得稳定的优秀表现。  相似文献   

8.
本文提出一种可用于建筑能耗预测的基于KNN分类器的DQN算法——K-DQN.其在利用马尔科夫决策过程对建筑能耗进行建模时,针对大规模动作空间问题,将原始动作空间缩减进而提高算法的预测精度及收敛速率.首先, K-DQN将原始动作空间平均划分为多个子动作空间,并将每个子动作空间对应的状态分为一类,以此构建KNN分类器.其次,利用KNN分类器,将不同类别相同次序动作进行统一表示,以实现动作空间的缩减.最后,K-DQN将状态类别概率与原始状态相结合,在构建新状态的同时,帮助确定缩减动作空间内每一动作的具体含义,从而确保算法的收敛性.实验结果表明,文章提出的K-DQN算法可以获得优于DDPG、DQN算法的能耗预测精度,且降低了网络训练时间.  相似文献   

9.
魏泽发  张鲁  解通 《软件》2021,42(1):132-134
随着全球汽车保有量的不断增加,人们在出行中遇到的交通拥堵问题日益严重,这对相关部门的管理效率提出较高要求。本文通过阐述深度学习领域中图像分类技术和目标检测技术的原理以及他们各自在交通拥堵检测中的应用,为相关部门在解决交通拥堵这一实际问题时提供应对方法,具有一定的参考价值。  相似文献   

10.
项目风险混合智能预警模型及其应用研究   总被引:1,自引:1,他引:0  
针对高风险项目样本数据十分缺乏的问题,提出一种基于距离评判和支持向量数据描述的项目风险混合智能预警模型。通过对各传统风险评价指标进行距离评判,并根据评判因子的大小选取敏感指标作为支持向量数据描述的输入,实现对不同风险状态的自动识别。高技术项目投资风险预警实例表明,该方法可以有效提取敏感特征指标,降低数据维数,提高单值分类方法在项目风险智能预警中的准确性和可靠性。  相似文献   

11.
目的 人脸美丽预测是研究如何使计算机具有与人类相似的人脸美丽判断或预测能力,然而利用深度神经网络进行人脸美丽预测存在过度拟合噪声标签样本问题,从而影响深度神经网络的泛化性。因此,本文提出一种自纠正噪声标签方法用于人脸美丽预测。方法 该方法包括自训练教师模型机制和重标签再训练机制。自训练教师模型机制以自训练的方式获得教师模型,帮助学生模型进行干净样本选择和训练,直至学生模型泛化能力超过教师模型并成为新的教师模型,并不断重复该过程;重标签再训练机制通过比较最大预测概率和标签对应预测概率,从而纠正噪声标签。同时,利用纠正后的数据反复执行自训练教师模型机制。结果 在大规模人脸美丽数据库LSFBD(large scale facial beauty database)和SCUT-FBP5500数据库上进行实验。结果表明,本文方法在人工合成噪声标签的条件下可降低噪声标签的负面影响,同时在原始LSFBD数据库和SCUT-FBP5500数据库上分别取得60.8%和75.5%的准确率,高于常规方法。结论 在人工合成噪声标签条件下的LSFBD和SCUT-FBP5500数据库以及原始LSFBD和SCUT-F...  相似文献   

12.
针对现有蝴蝶识别研究中所用数据集蝴蝶种类偏少,且只含有蝴蝶标本照片、不含生态环境中蝴蝶照片的问题,发布了一个同时包含标本照片和生态照片的蝴蝶图像数据集,其中标本照片包含全部中国蝶类志蝴蝶种类,共计4270张照片、1176种,蝴蝶生态环境下照片1425张、111种.提出基于深度学习技术Faster R-CNN的蝴蝶种类自动识别系统,包括生态照片中蝴蝶位置的自动检测和物种鉴定.实验去除只含有单张生态照片的蝴蝶种类,对剩余的蝴蝶生态照片进行5-5划分,构造2种不同训练数据集:一半生态照片+全部模式照片、一半生态照片+对应种类模式照片;训练3种不同网络结构的蝴蝶自动识别系统,以平均精度均值(mean average precision, mAP)为评价指标,采用上下、左右翻转、不同角度旋转、加噪、不同程度模糊、对比度升降等9种方式扩充训练集.实验结果表明,基于Faster R-CNN深度学习框架的蝴蝶自动识别系统对生态环境中的蝴蝶照片能实现其中蝴蝶位置的自动检测和物种识别,模型的mAP最低值接近60%,并能同时检测出生态照中的多只蝴蝶和完成物种识别.  相似文献   

13.
在各种灾害中,火灾是最经常、最普遍的威胁公众安全和社会发展的主要灾害之一。随着经济建设的迅猛发展,城市规模日趋扩大,重大火灾隐患急剧增加。然而,目前广泛使用的烟雾传感器探测火灾的方法,易受距离等因素影响,导致检测不及时。视频监控系统的引入为解决这一问题提供了新思路,基于视频的传统图像处理算法是较早提出的方法,最近机器视觉与图像处理技术快速发展,涌现出一系列使用深度学习技术来自动检测视频和图像中火灾的方法,在消防安全领域具有非常重要的实际应用价值。为了综合分析火灾检测的深度学习方法相关改进及应用,简要介绍了基于深度学习的火灾检测流程,重点从分类、检测、分割3个粒度对火灾检测的深度方法详细对比分析,阐述每类算法针对现有问题采取的相关改进。总结现阶段火灾检测存在的问题,并提出未来的研究方向。  相似文献   

14.
有效的故障检测与诊断将极大地提高风电机设备运行效率和可靠性,降低维修成本,保障生产过程的顺利进行;为实现高效率的设备故障预警与维护,研究基于传感器技术和机器学习的设备运行故障检测及诊断方法;采用箱型图法和小波包降噪法等对传感器传输的数据信号进行预处理;使用双向长短时记忆网络构建时间序列预测模型;并基于预测残差和贝叶斯概率理论,设计信号异常识别策略,对故障进行实时监测与故障预警;经实验测试,研究设计模型的诊断准确率为98.88%,无漏诊情况,误诊率在1.5%以下,实现了在提前14小时以上进行预警;经实际应用,研究设计模型满足了风电机设备故障预警的及时需求,同时能够在较高的准确率下对故障进行诊断.  相似文献   

15.
目前在垃圾分类目标检测上大多采用YOLOv5系列算法,该算法在相同参数量的情况下,检测精度和检测速度都相对不太高,难以满足实际应用需求。论文对基于PP-PicoDet技术的垃圾分类目标检测应用进行了研究,并将其与几种常见的垃圾分类目标检测算法进行实验对比分析;结果表明,PP-PicoDet算法能够在使用更少的参数量的情况下,实现较高的检测精度和速度,能够满足移动端部署需求。  相似文献   

16.
人脸图像的年龄和性别识别是人脸分析的重要任务,在真实多变场景下完成识别依然面临挑战。改进深度卷积神经网络(Convolutional Neural Network,CNN),将首层大尺寸卷积核替换为级联3[×]3卷积核;采用跨连卷积层融合中层和高层抽象特征;加入Batch Normalization(BN)层,设置较高的学习率和较小的Dropout比率;采用1[×]1卷积核与全局平均池化(Global Average Pooling)取代全连接层。实验表明,所提方法与主流的年龄性别识别方法比较具有较好的识别率,在Adience数据集上,年龄识别精度达到89.8%,性别识别精度达到93.3%。  相似文献   

17.
Support Vector Data Description   总被引:49,自引:0,他引:49  
  相似文献   

18.
    
With the booming of cyber attacks and cyber criminals against cyber-physical systems(CPSs),detecting these attacks remains challenging.It might be the worst of times,but it might be the best of times because of opportunities brought by machine learning(ML),in particular deep learning(DL).In general,DL delivers superior performance to ML because of its layered setting and its effective algorithm for extract useful information from training data.DL models are adopted quickly to cyber attacks against CPS systems.In this survey,a holistic view of recently proposed DL solutions is provided to cyber attack detection in the CPS context.A six-step DL driven methodology is provided to summarize and analyze the surveyed literature for applying DL methods to detect cyber attacks against CPS systems.The methodology includes CPS scenario analysis,cyber attack identification,ML problem formulation,DL model customization,data acquisition for training,and performance evaluation.The reviewed works indicate great potential to detect cyber attacks against CPS through DL modules.Moreover,excellent performance is achieved partly because of several highquality datasets that are readily available for public use.Furthermore,challenges,opportunities,and research trends are pointed out for future research.  相似文献   

19.
高质量学习图中节点的低维表示是当前的一个研究热点。现有浅模型的方法无法捕捉图结构的非线性关系,图神经网络技术中的图卷积模型会产生过平滑问题。同时,如何确定不同跳数关系在图表示学习中的作用亦是研究中尚需解决的问题。以解决上述问题为目的,提出一个基于T(T>1)个前馈神经网络的深度学习模型,该框架利用深度模型抽取图结构的非线性关系,T个子模型有效地捕获图的局部和全局(高阶)关系信息,并且它们在最终的向量表示中赋予了不同的作用、从而发挥不同跳数关系的优势。在顶点分类和链接预测任务中的实验结果表明,该框架比现有方法具有竞争力,对比基准算法可以获得20%左右的提升。  相似文献   

20.
基于深度学习的三维模型分类方法大都面向特定的具体任务;在面向三维模型多样化分类任务时表现不佳;泛用性不足。为此;提出了一种通用的端到端的深度集成学习模型E2E-DEL(end-to-end deep ensemble learning);由多个初级学习器和一个集成学习器组成;可以自动学习复杂三维模型的复合特征信息;并使用层次迭代式学习策略;综合考量不同层次网络的特征学习能力;合理平衡各个初级学习器的子特征学习和集成学习器的集成特征学习效果;自适应于三维模型多样化分类任务。基于此;设计了一种面向多视图的深度集成学习网络MV-DEL(multi-view deep ensemble learning);应用于一般性、细粒度、零样本三种不同类型的三维模型分类任务中。在多个公开数据集上的实验验证了该方法具有良好的泛化性与普适性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号