首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
《Ergonomics》2012,55(10):1287-1297
The goal of this study was to quantify localised muscle fatigue resulting from low mean levels of exertion in younger (< 40 years) and older (>50 years) adults. Fatigue, elicited in the finger flexor muscles by intermittent (10% mean maximum voluntary contraction (MVC)) and sustained (8% MVC) handgrip exercises, was quantified by a muscle twitch force response before, immediately after and during 3 h following exercise. Despite greater mean loads, recovery time was shorter following intermittent than sustained contractions, which suggests that recovery from fatigue is more sensitive to rest within the work cycle than mean work. The more pronounced effects for younger than older individuals following the sustained exertion indicate that changes in muscle fibre type composition might predispose older individuals to be more resistant to fatigue resulting from sustained contractions of low level. Performing hand exertion tasks requiring low mean force levels contributes to similar long-lasting fatigue effects regardless of gender and age. Intermittent periods of complete rest reduce muscle fatigue. Since fatigue was not perceived during recovery from the tested sustained and intermittent contractions, subjective evaluations may not be a reliable indicator of localised muscle fatigue.  相似文献   

2.
Among the shoulder musculoskeletal disorders (MSDs), rotator cuff disorders are prevalent and known to substantially limit an individual's strength and ability to work. Despite the frequency and cost of rotator cuff injuries, very little research has been done on understanding the load response relationship of rotator cuff muscles. Therefore, this study was aimed at evaluating the strength, endurance and fatigue response of rotator cuff muscles. As a first step, strengths of Supraspinatus, Infraspinatus, and Teres Minor were measured for ten healthy male participants using muscle specific Maximum Voluntary Contractions (MVC). Then, endurance time and surface Electromyography (EMG) data were recorded during 15%, 30%, 45%, and 60% MVC exertions. Infraspinatus exhibited the highest strength followed by Teres Minor and Supraspinatus. Despite the strength differences, small variations were observed in the endurance time between the muscles. The effect of %MVC exertions on endurance time, average muscle activity and muscle fatigue were statistically significant. Median frequency decreased and muscle activation increased with an increase in force exertion levels; however, the changes observed for an increase in the exertion level from 15% to 30% MVC were much higher than the changes observed for an increase in the exertion level from 45% to 60% MVC.Relevance to industryResults of this study indicate that the rotator cuff muscles have different strengths but exhibit very similar endurance and fatigue behavior. These findings can assist ergonomic practitioners with the design and/or evaluation of workplace upper extremity exertions to reduce/manage stress on the rotator cuff muscles and shoulder.  相似文献   

3.
《Ergonomics》2012,55(1):83-91
Overhead work has established links to upper extremity discomfort and disorders. As many jobs incorporate working overhead, this study aimed to identify working conditions requiring relatively lower muscular shoulder load. Eleven upper extremity muscles were monitored with electromyography during laboratory simulations of overhead work tasks. Tasks were defined with three criteria: work configuration (fixed, stature-specific); target angle (?15°, 0°, 15°, 30° from vertical); direction of applied hand force (pulling backwards, pushing forwards, downwards, sideways, upwards). Normalised electromyographic activity was greater for fixed configurations, particularly when pulling in a backward direction (total activity = 108.3% maximum voluntary exertion (MVE)) compared to pushing down or forward (total activity ranging from 10.5 to 17.3%MVE). Further, pulling backwards at angles of –15° and 0° showed the highest muscular demand (p < 0.05). These results suggest that, if possible, positioning overhead work in front of the body with exertions directed forwards will result in the lowest upper extremity muscle demand.

Statement of Relevance: Overhead work pervades occupational settings and is associated with risk of upper extremity musculoskeletal disorders. The muscular intensity associated with performing overhead work was assessed in several combinations of work placement and hand force direction. These findings should have utility for designing overhead work tasks that reduce muscular exposure.  相似文献   

4.
《Ergonomics》2012,55(7):940-956
Abstract

Many contemporary occupations are characterised by long periods of low loads. These lower force levels, which are relevant to the development of work-related musculoskeletal disorders, are usually not the focus of fatigue studies. In studies that did measure fatigue in light manual or precision work, within and between measurement responses were inconsistent. The aim of this study was to identify fatigue measures that were responsive at lower force levels (<10% MVC) over the course of an 8-h period. A complementary set of fatigue measures, reflecting both neuromuscular and cognitive mechanisms, was measured during a light precision micro-pipetting task performed by 11 participants. Nine measures were found to be significantly responsive over the 8-h period, including: ratings of perceived fatigue, postural tremor, blink frequency and critical flicker fusion frequency threshold. Common field measures, specifically electromyography RMS amplitude and maximum voluntary contractions, did not lead to extraordinary time effects.

Practitioner summary: The findings provide insight towards the responsiveness of a complementary set of field usable fatigue measures at low work intensities Although commonly used measures did not reveal significant increases in fatigue, nine alternative measures were significantly responsive over the 8-h period.  相似文献   

5.
《Ergonomics》2012,55(6):598-615
The aim of this study was to investigate the possible associations between working technique, sex, symptoms and level of physical load in VDU-work. A study group of 32 employees in the editing department of a daily newspaper answered a questionnaire, about physical working conditions and symptoms from the neck and the upper extremities. Muscular load, wrist positions and computer mouse forces were measured. Working technique was assessed from an observation protocol for computer work. In addition ratings of perceived exertion and overall comfort were collected. The results showed that subjects classified as having a good working technique worked with less muscular load in the forearm (extensor carpi ulnaris p=0.03) and in the trapezius muscle on the mouse operating side (p=0.02) compared to subjects classified as having a poor working technique. Moreover there were no differences in gap frequency (number of episodes when muscle activity is below 2.5% of a reference contraction) or muscular rest (total duration of gaps) between the two working technique groups. Women in this study used more force (mean force p=0.006, peak force p=0.02) expressed as % MVC than the men when operating the computer mouse. No major differences were shown in muscular load, wrist postures, perceived exertion or perceived comfort between men and women or between cases and symptom free subjects. In conclusion a good working technique was associated with reduced muscular load in the forearm muscles and in the trapezius muscle on the mouse operating side. Moreover women used more force (mean force and peak force) than men when operating the click button (left button) of the computer mouse.  相似文献   

6.
Several occupational groups are exposed to periods of low ambient temperatures while performing manual work tasks outdoors. Work tasks typically include heavy lifting, tool handling, and overhead work. This study evaluated the effect of working position and cold environment on muscle activation level (%RMSmax) and fatigue in the upper limb during manual work tasks. Fourteen male participants (25 ± 3 years, 80.9 ± 6.4 kg, 182 ± 5 cm) completed a 2-h test protocol consisting of five test periods alternating with four work periods, wearing identical sets of clothing, under cold (−15 °C) and control (5 °C) conditions. The work periods consisted of manual work at the hip level, manual overhead work, and a lifting exercise. The test periods consisted of isometric maximal voluntary contractions (MVC) and seated rest. Skin temperatures decreased during cold exposure, especially in the extremities. %RMSmax in the forearm was higher in the cold condition both during overhead work and work at the hip level than that for the same work in the control condition, especially at the end of the test when the difference was approximately 25% (equating to 2–3 %RMSmax). For the middle deltoid muscle, the %RMSmax was approximately three times (or 10 %RMSmax) higher during overhead work than work at the hip level, but there was no additional cost of working in the cold. Signs of deltoid muscle fatigue (decrease in electromyography median power frequency and an increase in %RMSmax) were observed during the overhead work periods in both temperature conditions. No decrease in MVC, as a sign of overall muscle fatigue, was observed in either condition.Relevance to industryThis study demonstrated that when wearing suitable cold-weather protective clothing, the adverse effect of work posture is much higher than that of cold on muscle demand and physical strain.  相似文献   

7.
8.
Borg's rating of perceived exertion (RPE) and category ratio (CR‐10) scales are commonly used to quantify perceived muscular exertion for body segments. Twenty females participated in an experiment to study the power grip force at four perceived exertion levels using either dominant or nondominant hand under two posture conditions. It was found that the subjects tended to apply a higher power grip force (100% of perceived maximum voluntary contraction) than the levels they were requested to apply. The power grip forces between dominant and nondominant hands at low hand exertion levels were negligible. The grip forces between the two hands were significantly different when the exertion level was nearly maximal. Linear regression models were established for the subjects to link the relationship between the perceived hand exertion and measured grip force, hand used, and hand/arm posture. All the models were statistically significant (p < 0.0001) with R2 values 0.97 or higher. These models provided better estimates in perceived hand exertion for dominant hand than for nondominant hand. A follow‐up experiment was conducted to measure the subjective rating of both the CR‐10 and RPE when a 98 N grip force was applied. It was found that the subjects reported higher exertion levels when they were using the CR‐10 scale than when they were using the RPE scale. © 2011 Wiley Periodicals, Inc.  相似文献   

9.
The task of wall painting produces considerable risk to the workers, both male and female, primarily in the development of upper extremity musculoskeletal disorders. Insufficient information is currently available regarding the potential benefits of using different paint roller designs or the possible adverse effects of painting at different work heights. The aim of this study was to investigate the influence of gender, work height, and paint tool design on shoulder muscle activity and exerted forces during wall painting. Ten young adults, five male and five female, were recruited to perform simulated wall painting at three different work heights with three different paint roller designs while upper extremity muscle activity and horizontal push force were recorded. Results demonstrated that for female participants, significantly greater total average (p = 0.007) and integrated (p = 0.047) muscle activity was present while using the conventional and curly flex paint roller designs compared to the proposed design in which the load was distributed between both hands. Additionally, for both genders, the high working height imposed greater muscular demands compared to middle and low heights. These findings suggest that, if possible, avoid painting at extreme heights (low or high) and that for female painters, consider a roller that requires the use of two hands; this will reduce fatigue onset and subsequently mitigate potential musculoskeletal shoulder injury risks.  相似文献   

10.
11.
Ergonomics has positive effects on both physical health and productivity, but estimating productivity benefits is difficult at the task design/redesign stage. Rest‐allowance prediction models are not suitable for repetitive, short‐cycle dynamic tasks, and methods–time measurement (MTM) techniques are limited in their suitability for considering ergonomics risk factors such as posture and force. The purpose of this study was to investigate the relationship between force and exertion duration on self‐selected duty cycle time and discomfort. Twenty‐one participants completed repetitive, upper‐limb exertion treatments, each of a 10‐minute duration. Five levels of force (10, 20, 40, 65, and 80% maximum voluntary contraction [MVC]) and exertion period (1, 2, 4, 6.5, and 8 seconds) were investigated. The psychophysical adjustment method was used whereby participants self‐selected a work pace for the second half of each treatment. Duty cycle, derived from the self‐paced cycle time, was the measure of productivity effects in the experiment. Analysis of variance revealed a significant effect on duty cycle time for force, exertion period, and their interaction (each p < 0.0001). Friedman's test indicated a significant effect of force (p < 0.0001) and exertion period (p < 0.0001) on discomfort. Spearman's correlation analysis showed a strong correlation between discomfort and duty cycle time (p < 0.05). Multiple regression analysis was used to develop a predictive model for duty cycle time based on force and exertion period, and this was a good fit to the data (R2 = 0.98, p < 0.05). Profiles were generated presenting zones of acceptable self‐selected duty cycle times based on force and exertion duration. © 2010 Wiley Periodicals, Inc.  相似文献   

12.
Ergonomic interventions such as increased scheduled breaks or job rotation have been proposed to reduce upper limb muscle fatigue in repetitive low-load work. This review was performed to summarize and analyze the studies investigating the effect of job rotation and work-rest schemes, as well as, work pace, cycle time and duty cycle, on upper limb muscle fatigue. The effects of these work organization factors on subjective fatigue or discomfort were also analyzed. This review was based on relevant articles published in PubMed, Scopus and Web of Science. The studies included in this review were performed in humans and assessed muscle fatigue in upper limbs. 14 articles were included in the systematic review. Few studies were performed in a real work environment and the most common methods used to assess muscle fatigue were surface electromyography (EMG). No consistent results were found related to the effects of job rotation on muscle activity and subjective measurements of fatigue. Rest breaks had some positive effects, particularly in perceived discomfort. The increase in work pace reveals a higher muscular load in specific muscles. The duration of experiments and characteristics of participants appear to be the factors that most have influenced the results. Future research should be focused on the improvement of the experimental protocols and instrumentation, in order to the outcomes represent adequately the actual working conditions.Relevance to industryIntroducing more physical workload variation in low-load repetitive work is considered an effective ergonomic intervention against muscle fatigue and musculoskeletal disorders in industry. Results will be useful to identify the need of future research, which will eventually lead to the adoption of best industrial work practices according to the workers capabilities.  相似文献   

13.
《Ergonomics》2012,55(5):584-600
Twenty-seven right-handed male university students participated in this study, which comprised a full factorial model consisting of three forearm rotation angles (60% prone and supine and neutral range of motion), three elbow angles (45°, 90° and 135°), three upper arm angles (45° flexion/extension and neutral), one exertion frequency (15 per min) and one level of pronation torque (20% maximum voluntary contraction (MVC) relative to MVC at each articulation). Discomfort rating after the end of each 5 min treatment was recorded on a visual analogue scale. Results of a repeated measures analysis of covariance on discomfort score, with torque endurance time as covariate, indicated that none of the factors was significant including torque endurance time (p = 0.153). An initial data collection phase preceded the main experiment in order to ensure that participants exerted exactly 20% MVC of the particular articulation. In this phase MVC pronation torque was measured at each articulation. The data revealed a significant forearm rotation angle effect (p = 0.001) and participant effect (p = 0.001). Of the two-way interactions, elbow?participant (p = 0.004), forearm?participant (p = 0.001) and upper arm?participant (p = 0.005) were the significant factors. Electromyographic activity of the pronator teres and biceps brachii muscles revealed no significant change in muscle activity in most of the articulations. Industrial jobs involving deviated upper arm postures are typical in industry but have a strong association with injury. Data from this study will enable better understanding of the effects of deviated upper arm postures on musculoskeletal disorders and can also be used to identify and control high-risk tasks in industry.  相似文献   

14.
15.
《Ergonomics》2012,55(7):839-846
Abstract

Despite its low energy cost, isometric contraction can result in the onset of local muscle fatigue. The onset of fatigue occurs more rapidly when the relative force exerted is greater than 15–20% of the maximum voluntary contraction (MVC) of the muscle considered, and when the contraction time is increased. The maximum maintenance time (limit-time) and the corresponding relative force are linked by a hyperbolic relation. Ischaemia promotes accumulation of acid metabolites produced during contraction, and hinders their elimination, thus constituting the main causal factor in the onset of local muscle fatigue. The introduction of rest periods of sufficient duration to ensure restoration of normal blood flow through the muscle is an effective way of delaying, or even preventing, the onset of muscle fatigue. Other factors may also be taken into account, such as the position in which the static work is performed, and the nature and number of muscles used simultaneously, etc. Numerous laboratory and field studies have allowed the development of various models that take into account the conditions relating to isometric contractions during static work.  相似文献   

16.
This study aims to assess the effects of repetitive motion-induced fatigue during manual packaging on kinematics and muscle activity of the arm, back and shoulder. Eighteen participants performed a 60-min manual packaging task. Electromyography median frequency of RUT, RES, LES and RB decreased by 13.2% (p < 0.05), 12.8% (p < 0.05), 11.3% (p < 0.05) and 21% (p < 0.001), respectively over time. The head flexion and the right upper arm flexion angles significantly (p < 0.001) differed among different packaging sizes, and similar results were observed for left upper arm flexion and rotation. The trunk and pelvis angles significantly (p < 0.05) differed over time under three kinds of packaging. The results showed there was an increase in the rating of perceived exertion from 8.56 to 16.94 (p<0.01) during the task. The outcomes of this study indicate repetitive movements in the manual packaging task resulted in elevated prevalence of muscle discomfort in packaging workers, especially the right brachioradialis. Interventions such as specific work: rest ratios, workplace redesign should be explored to relieve muscle fatigue and discomfort.Relevance to industryFor workers performing repetitive manual packaging tasks, biomechanical analysis of different muscles groups can help in developing appropriate ergonomic interventions.  相似文献   

17.
《Ergonomics》2012,55(10):921-933
The purpose of this laboratory study was to investigate the effects of surface electromyography (EMG)- and mechanomyography (MMG)-based audio and visual biofeedback during computer work. Standardized computer work was performed for 3 min with/without time constraint and biofeedback in a randomized order. Biofeedback was given on the basis of an individual preset threshold value for the right trapezius EMG and MMG signal and a time factor (repetition of events above the threshold). The duration of muscle activity above the preset threshold, the right trapezius EMG and MMG root mean square (RMS) values as well as the work performance in terms of number of completed graph/mouse clicks/errors, the rating of perceived exertion (RPE) and the usefulness of the biofeedback were assessed. The duration of muscle activity above the threshold was significantly lower with MMG compared with EMG as source of biofeedback (p < 0.05). Biofeedback led to a significant decrease in the right trapezius EMG RMS, lower RPE and decreased number of errors and mouse clicks, but also decreased number of completed graphs (p < 0.05). Audio and visual biofeedbacks were as effective. MMG-based biofeedback is a potential reliable alternative to EMG in ergonomics. A lowering of the trapezius muscle activity may contribute to diminish the risk of work related musculoskeletal disorders development.  相似文献   

18.
The purpose of this study was to evaluate perceived exertions for various levels of actual exertion. A total of 40 healthy adults participated. They repeatedly performed the task of exerting a grip force for 5 s, following the target force on a screen. Then, they were asked to evaluate the intensity of each task based on Borg's CR‐10 scale. The results of this study indicated that participants tend to underestimate their grip‐force exertion at low target‐force levels (10–40% maximum voluntary contraction [MVC]), whereas overestimation was found at high target‐force levels (60–80% MVC). Interestingly, perceived exertion was very accurate at a target‐force level of 50% MVC (the 50% phenomenon). Based on these results, regression equations were derived to estimate the actual exertion of grip force from a perceived exertion. The Borg's CR‐10 scale for grip force was revised based on the regression equations.  相似文献   

19.
《Ergonomics》2012,55(9):1932-1940
The purpose of the study was to compare muscular activity levels and sitting posture displayed by 10 children (mean age =4·7 years) when performing tracing tasks while seated at a traditional work station (level desk top, 5° backward sloping seat) and at an ergonomically designed work station (15° sloping desk top, 15° forward sloping seat). EMG profiles of latissimus dorsi (LD), erector spine (ES), and superior trapezius (ST) were sampled using Medi-trace disposable surface electrodes for 10min on the non-dominant side. Muscle activity was sampled (1000 Hz) every 2min for 5000 ms while the subjects performed the tracing tasks at each station. Raw EMG signals of the five trials for each muscle were processed by removing signal offset, full-wave rectification, and integration. The subjects' posture was monitored from a lateral view using a Panasonic VHS video camera while the children were seated at each work station. Neck flexion angle and the angle between the torso and thigh (hip angle) were manually sampled from the video images each 1 min as an indication of the posture adopted by the subjects during the tracing tasks. Use of f-tests for dependent means indicated that there was no significant difference in either mean ES or ST muscle activity as a function of work station design. However, subjects demonstrated significantly less LD activity when seated at the ergonomic work station (mean = 20·9 V ms) compared with the traditional work station (mean = 24·4 V ms, t = ? 2·88, p = 0·018). When seated at the ergonomically designed work station, subjects demonstrated less neck flexion (mean = 34·4°) and a significantly larger hip angle (mean = 107·8°, t= ? 3·46, p = 0·003) than when seated at the traditional work station (neck flexion = 38·7°, hip angle = 95·5°). It was concluded that use of the ergonomic work station could assist in maintaining a more efficient anatomical alignment of young children when sitting and writing.  相似文献   

20.
《Ergonomics》2012,55(11):1072-1080
The objective of this study was to evaluate individual finger force and contribution to a gripping force, the difference between actual and expected finger forces and subjective discomfort rating at 10 different submaximal voluntary contraction (%MVC) levels (10–100% in 10 increments). Seventy-two participants randomly exerted gripping force with a multi-finger force measurement system. The individual finger force, gripping force and discomfort increased as %MVC levels increased. The middle and ring fingers exerted more force and contributed to a gripping force more than the index and little fingers due to their larger mass fractions of the digit flexor muscles. It was apparent at <50% MVC; however, the index finger increased its contribution and exerted even more force than expected at more than 50% MVC. Subjective discomfort supported the results of the objective measures. This could explain the conflicting findings between index and ring fingers in previous finger contribution studies.

Statement of Relevance: Hand tool design is of special interest in ergonomics due to its association with musculoskeletal disorders in the hand. This study reveals a different contribution pattern of the fingers in submaximal voluntary contraction of gripping exertion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号