首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对复杂环境下移动机器人路径规划实际问题,提出了一种基于行为的移动机器人控制体系结构,设计了一种基于模糊控制器的移动机器人实时路径规划算法,为移动机器人在未知环境中的导航提出了一种新的思路.仿真结果表明,移动机器人能够克服环境中的不确定性,可靠地完成复杂任务,该算法有计算量小,效率高,鲁棒性好等优点.  相似文献   

2.
For a mobile robot to be practical, it needs to navigate in dynamically changing environments and manipulate objects in the environment with operating ease. The main challenges to satisfying these requirements in mobile robot research include the collection of robot environment information, storage and organization of this information, and fast task planning based on available information. Conventional approaches to these problems are far from satisfactory due to their requirement of high computation time. In this paper, we specifically address the problems of storage and organization of the environment information and fast task planning in the area of robotic research. We propose an special object-oriented data model (OODM) for information storage and management in order to solve the first problem. This model explicitly represents domain knowledge and abstracts a global perspective about the robot's dynamically changing environment. To solve the second problem, we introduce a fast task planning algorithm that fully uses domain knowledge related to robot applications and to the given environment. Our OODM based task planning method presents a general frame work and representation, into which domain specific information, domain decomposition methods and specific path planners can be tailored for different task planning problems. This method unifies and integrates the salient features from various areas such as database, artificial intelligence, and robot path planning, thus increasing the planning speed significantly  相似文献   

3.
Search space explosion is a critical problem in robot task planning. This problem limits current robot task planners to solve only simple block world problems and task planning in a real robot working environment to be impractical. This problem is mainly due to the lack of utilization of domain information in task planning. In this paper, we describe a fast task planner for indoor robot applications that effectively uses domain information to speed up the planning process. In this planner, domain information is explicitly represented in an object-oriented data model (OODM) that uses many-sorted logic (MSL) representation. The OODM is convenient for the management of complex data and many-sorted logic is effective for pruning in the rule search process. An inference engine is designed to take advantage of the salient features of these two techniques for fast task planning. A simulation example and complexity analysis are given to demonstrate the advantage of the proposed task planner.  相似文献   

4.
A case-based approach to heuristic planning   总被引:1,自引:1,他引:0  
Most of the great success of heuristic search as an approach to AI Planning is due to the right design of domain-independent heuristics. Although many heuristic planners perform reasonably well, the computational cost of computing the heuristic function in every search node is very high, causing the planner to scale poorly when increasing the size of the planning tasks. For tackling this problem, planners can incorporate additional domain-dependent heuristics in order to improve their performance. Learning-based planners try to automatically acquire these domain-dependent heuristics using previous solved problems. In this work, we present a case-based reasoning approach that learns abstracted state transitions that serve as domain control knowledge for improving the planning process. The recommendations from the retrieved cases are used as guidance for pruning or ordering nodes in different heuristic search algorithms applied to planning tasks. We show that the CBR guidance is appropriate for a considerable number of planning benchmarks.  相似文献   

5.
A primary challenge of agent-based policy learning in complex and uncertain environments is escalating computational complexity with the size of the task space(action choices and world states) and the number of agents.Nonetheless,there is ample evidence in the natural world that high-functioning social mammals learn to solve complex problems with ease,both individually and cooperatively.This ability to solve computationally intractable problems stems from both brain circuits for hierarchical representation of state and action spaces and learned policies as well as constraints imposed by social cognition.Using biologically derived mechanisms for state representation and mammalian social intelligence,we constrain state-action choices in reinforcement learning in order to improve learning efficiency.Analysis results bound the reduction in computational complexity due to stateion,hierarchical representation,and socially constrained action selection in agent-based learning problems that can be described as variants of Markov decision processes.Investigation of two task domains,single-robot herding and multirobot foraging,shows that theoretical bounds hold and that acceptable policies emerge,which reduce task completion time,computational cost,and/or memory resources compared to learning without hierarchical representations and with no social knowledge.  相似文献   

6.
There has been growing interest in motion planning problems for mobile robots. In this field, the main research is to generate a motion for a specific robot and task without previously acquired motions. However it is too wasteful not to use hard-earned acquired motions for other tasks. Here, we focus on a mechanism of reusing acquired motion knowledge and study a motion planning system able to generate and reuse motion knowledge. In this paper, we adopt a tree-based representation for expressing knowledge of motion, and propose a hierarchical knowledge for realizing a reuse mechanism. We construct a motion planning system using hierarchical knowledge as motion knowledge and using genetic programming as a learning method. We apply a proposed method for the gait generation task of a six-legged locomotion robot and show its availability with computer simulation.  相似文献   

7.
8.
Flexible, general-purpose robots need to autonomously tailor their sensing and information processing to the task at hand. We pose this challenge as the task of planning under uncertainty. In our domain, the goal is to plan a sequence of visual operators to apply on regions of interest (ROIs) in images of a scene, so that a human and a robot can jointly manipulate and converse about objects on a tabletop. We pose visual processing management as an instance of probabilistic sequential decision making, and specifically as a Partially Observable Markov Decision Process (POMDP). The POMDP formulation uses models that quantitatively capture the unreliability of the operators and enable a robot to reason precisely about the trade-offs between plan reliability and plan execution time. Since planning in practical-sized POMDPs is intractable, we partially ameliorate this intractability for visual processing by defining a novel hierarchical POMDP based on the cognitive requirements of the corresponding planning task. We compare our hierarchical POMDP planning system (HiPPo) with a non-hierarchical POMDP formulation and the Continual Planning (CP) framework that handles uncertainty in a qualitative manner. We show empirically that HiPPo and CP outperform the naive application of all visual operators on all ROIs. The key result is that the POMDP methods produce more robust plans than CP or the naive visual processing. In summary, visual processing problems represent a challenging domain for planning techniques and our hierarchical POMDP-based approach for visual processing management opens up a promising new line of research.  相似文献   

9.
Continuous-state POMDPs provide a natural representation for a variety of tasks, including many in robotics. However, most existing parametric continuous-state POMDP approaches are limited by their reliance on a single linear model to represent the world dynamics. We introduce a new switching-state dynamics model that can represent multi-modal state-dependent dynamics. We present the Switching Mode POMDP (SM-POMDP) planning algorithm for solving continuous-state POMDPs using this dynamics model. We also consider several procedures to approximate the value function as a mixture of a bounded number of Gaussians. Unlike the majority of prior work on approximate continuous-state POMDP planners, we provide a formal analysis of our SM-POMDP algorithm, providing bounds, where possible, on the quality of the resulting solution. We also analyze the computational complexity of SM-POMDP. Empirical results on an unmanned aerial vehicle collisions avoidance simulation, and a robot navigation simulation where the robot has faulty actuators, demonstrate the benefit of SM-POMDP over a prior parametric approach.  相似文献   

10.
We present a distributed hierarchical planning and execution monitoring system and its implementation on an actual mobile robot. The planning system is a distributed hierarchical domain independent system called FPS for Flexible Planning System. It is a rule based plan generation system with planning specific and domain specific rules. A planning solution to the ‘Boxes and Wedge’ Problem is presented.The Robot Control System (RCS) operates and monitors the robot in the real world. In order to allow real-time responses to asynchronous events (both internal and external), RCS consists of a rule-based decision kernel and a distributed set of sensor/effector monitors. RCS contains an execution model and may authorize local corrective actions, e.g., unexpected obstacle avoidance during execution of a trajectory. RCS also generates status and failure reports through which the PMs inform the different decision subsystems as to the robot's state and current capacities. The failure reports help the RCS and planners in correcting/replanning a plan that has aborted. An illustrative example of system behaviour is to be presented.  相似文献   

11.
随着移动机器人作业环境复杂度的提高、随机性的增强、信息量的减少,移动机器人的运动规划能力受到了严峻的挑战.研究移动机器人高效自主的运动规划理论与方法,使其在长期任务中始终保持良好的复杂环境适应能力,对保障工作安全和提升任务效率具有重要意义.对此,从移动机器人运动规划典型应用出发,重点综述了更加适应于机器人动态复杂环境的运动规划方法——深度强化学习方法.分别从基于价值、基于策略和基于行动者-评论家三类强化学习运动规划方法入手,深入分析深度强化学习规划方法的特点和实际应用场景,对比了它们的优势和不足.进而对此类算法的改进和优化方向进行分类归纳,提出了目前深度强化学习运动规划方法所面临的挑战和亟待解决的问题,并展望了未来的发展方向,为机器人智能化的发展提供参考.  相似文献   

12.
13.
14.
In this work, we propose a methodology to adapt a mobile robot’s environment model during exploration as a means of decreasing the computational complexity associated with information metric evaluation and consequently increasing the speed at which the system is able to plan actions and travel through an unknown region given finite computational resources. Recent advances in exploration compute control actions by optimizing information-theoretic metrics on the robot’s map. These metrics are generally computationally expensive to evaluate, limiting the speed at which a robot is able to explore. To reduce computational cost, we propose keeping two representations of the environment: one full resolution representation for planning and collision checking, and another with a coarse resolution for rapidly evaluating the informativeness of planned actions. To generate the coarse representation, we employ the Principal of Relevant Information from rate distortion theory to compress a robot’s occupancy grid map. We then propose a method for selecting a coarse representation that sacrifices a minimal amount of information about expected future sensor measurements using the Information Bottleneck Method. We outline an adaptive strategy that changes the robot’s environment representation in response to its surroundings to maximize the computational efficiency of exploration. On computationally constrained systems, this reduction in complexity enables planning over longer predictive horizons, leading to faster navigation. We simulate and experimentally evaluate mutual information based exploration through cluttered indoor environments with exploration rates that adapt based on environment complexity leading to an order-of-magnitude increase in the maximum rate of exploration in contrast to non-adaptive techniques given the same finite computational resources.  相似文献   

15.
Mobile robotics has achieved notable progress, however, to increase the complexity of the tasks that mobile robots can perform in natural environments, we need to provide them with a greater semantic understanding of their surrounding. In particular, identifying indoor scenes, such as an Office or a Kitchen, is a highly valuable perceptual ability for an indoor mobile robot, and in this paper we propose a new technique to achieve this goal. As a distinguishing feature, we use common objects, such as Doors or furniture, as a key intermediate representation to recognize indoor scenes. We frame our method as a generative probabilistic hierarchical model, where we use object category classifiers to associate low-level visual features to objects, and contextual relations to associate objects to scenes. The inherent semantic interpretation of common objects allows us to use rich sources of online data to populate the probabilistic terms of our model. In contrast to alternative computer vision based methods, we boost performance by exploiting the embedded and dynamic nature of a mobile robot. In particular, we increase detection accuracy and efficiency by using a 3D range sensor that allows us to implement a focus of attention mechanism based on geometric and structural information. Furthermore, we use concepts from information theory to propose an adaptive scheme that limits computational load by selectively guiding the search for informative objects. The operation of this scheme is facilitated by the dynamic nature of a mobile robot that is constantly changing its field of view. We test our approach using real data captured by a mobile robot navigating in Office and home environments. Our results indicate that the proposed approach outperforms several state-of-the-art techniques for scene recognition.  相似文献   

16.
The industrial cyber–physical system (ICPS) framework can reduce the computational load and improve task efficiency. This paper studies the ICPS-based scheduling strategy for multi-warehouse mobile robots (multi-WMRs). First of all, the possible congestion problem is considered in topological map modeling, which is transformed into a new path time cost index. Second, each robot independently executes the path planning algorithm, which realizes distributed path computation and takes time cost and destination distance into account. The improved task assignment strategy includes task evaluation and decision-making, which are considered part of the planning and help to improve task efficiency. Finally, the complete scheduling process is applied to the novel ICPS architecture, including cost evaluation, path planning, task assignment, and collision avoidance. In numerical experiments, the task efficiency has been increased by 24.8% to recent research and 14.59% to previous work. The average congestion time is reduced by 28.41%, and the planning time is reduced to 10.13% of the traditional method.  相似文献   

17.
由于对机器人的任务要求日趋复杂和多变,如何使机器人具备灵活的配置和运动规划能力,以适应复杂任务的需求,成为了目前运动规划领域所研究的核心问题.传统的基于任务空间和配置空间的建模方法虽然在机器人运动规划领域得到了非常广泛的应用,但在用于解决复杂规划任务时无法对不可行任务进行进一步地处理.本文在表征空间模型的基础上,提出了一种分层的运动规划算法,一方面借助于表征空间维度的扩展,使对运动规划任务的描述更为灵活;另一方面通过任务层与运动层的循环交互,使生成的路径满足更高层次和更丰富的任务要求.在仿人机器人和多机器人系统上的应用结果表明了本文所提算法的有效性.  相似文献   

18.
The goal of robotics research is to design a robot to fulfill a variety of tasks in the real world. Inherent in the real world is a high degree of uncertainty about the robot’s behavior and about the world. We introduce a robot task architecture, DTRC, that generates plans with actions that incorporate costs and uncertain effects, and states that yield rewards.The use of a decision-theoretic planner in a robot task architecture is demonstrated on the mobile robot domain of miniature golf. The miniature golf domain shows the application of decision-theoretic planning in an inherently uncertain domain, and demonstrates that by using decision-theoretic planning as the reasoning method in a robot task architecture, accommodation for uncertain information plays a direct role in the reasoning process.  相似文献   

19.
Until recently, techniques for AI plan generation relied on highly restrictive assumptions that were almost always violated in real-world environments; consequently, robot designers adopted reactive architectures and avoided AI planning techniques. Some recent research efforts have focused on obviating such assumptions by developing techniques that enable the generation and execution of plans in dynamic, uncertain environments. In this paper, we discuss one such technique, rationale-based monitoring, originally introduced by Veloso, Pollack, and Cox (Proceedings for the Fourth International Conference on AI Planning Systems, Pittsburgh, PA, 1998, pp. 171–179) and we describe our use of it in a simple mobile robot environment. We review the original approach, describe how it can be adapted for a causal-link planner, and provide experimental results demonstrating that it can lead to improved plans without consuming excessive overhead. We also describe our use of rationale-based monitoring in a mobile robot office-assistant project currently in progress.  相似文献   

20.
A hierarchical network of neural network planning and control is employed to successfully accomplish a task such as grasping in a cluttered real world environment. In order for the individual robot joint controllers to follow their specific reference commands, information is shared with other neural network controllers and planners within the hierarchy. Each joint controller is initialized with weights that will acceptably control given a change in any of several crucial parameters across a broad operating range. When increased accuracy is needed as parameters drift, the diagnostic node fuzzy supervisor interprets the controller network's diagnostic outputs and transitions the weights to a closest fit specificchild controller. Future reference commands are in turn influenced by the diagnostic outputs of every robot joint neural network controller. The neural network controller and diagnostics are demonstrated for linear and nonlinear plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号