首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
About 1 μm thick films of polystyrene (PS) and polymethylmethacrylate (PMMA) doped with diphenylsulfoxide (DS) up to 40 wt.% were prepared from solutions using spin-coating method. Glass transition temperature (T g) of doped polymer films was determined by DSC technique. The depth profile and surface concentration of DS dopant were measured by RBS and XPS methods, respectively. The temperature dependence of relative permittivity of the films was determined from capacitance measurement. The dependence of polarization (P) on electric field (E) was measured using a standard Sawyer–Tower circuit. The glass transition temperature T g of both composites was found to be decreasing function of the DS concentration. The DS doping leads to an increase of relative permittivity of the PS and PMMA films. RBS and XPS measurements reveal an outward diffusion of DS dopant in PS/DS films at elevated temperature. No such effect was observed in PMMA/DS films. PMMA/DS layers were found to be more thermally stable comparing to PS/DS.  相似文献   

2.
Conductance measurements of nanostructures with simultaneous transmission electron microscopy (TEM) were performed on thin insulating SrF2 films (3 nm thick) and Fe–SrF2 granular films (10 nm thick) deposited on tip-shaped Au electrodes. By using a movable counter electrode, nanoscale regions were selected for investigation. Systematic measurements taken during the deformation of the SrF2 film by the counter-electrode provided a tunnelling barrier height of about 2.5 eV. The conductance of Fe–SrF2 in nanoscale (∼ 500 nm2) showed the Coulomb staircase like characteristics at room temperature. The staircase period approximately corresponded to the value estimated from the geometry observed by TEM. The feasibility of this method is briefly described.  相似文献   

3.
Photocatalytic properties of porous TiO2/Ag thin films   总被引:1,自引:0,他引:1  
In this study, nanocrystalline TiO2/Ag composite thin films were prepared by a sol-gel spin-coating technique. By introducing polystyrene (PS) spheres into the precursor solution, porous TiO2/Ag thin films were prepared after calcination at a temperature of 500 °C for 4 h. Three different sizes (50, 200, and 400 nm) of PS spheres were used to prepare porous TiO2 films. The as-prepared TiO2 and TiO2/Ag thin films were characterized by X-ray diffractometry (XRD) and by scanning electron microscopy to reveal structural and morphological differences. In addition, the photocatalytic properties of these films were investigated by degrading methylene blue under UV irradiation.When PS spheres of different sizes were introduced after calcination, the as-prepared TiO2 films exhibited different porous structures. XRD results showed that all TiO2/Ag films exhibited a major anatase phase. The photodegradation of porous TiO2 thin films prepared with 200 nm PS spheres and doped with 1 mol% Ag exhibited the best photocatalytic efficiency where ∼ 100% methylene blue was decomposed within 8 h under UV exposure.  相似文献   

4.
Silane coupling reagent (3-mercaptopropyl trimethoxysilane (MPTS)) was used to prepare twodimensional self-assembled monolayer (SAM) on silicon substrate. The terminal -SH group was in situ oxidized to −SO3H group to endow the film with good chemisorption ability. Then TiO2 thin films were deposited on the oxidized MPTS-SAM to form composite thin films, making use of the chemisorption ability of the −SO3H group. Atomic force microscope (AFM) and contact angle measurements were used to characterize TiO2 films. Adhesive force and friction force of TiO2 thin films and silicon substrate were measured under various applied normal loads and scanning speed of AFM tip. Results showed that the friction force increased with applied normal loads and scanning speed of AFM tip. In order to study the effect of capillary force, tests were performed in various relative humidities. Results showed that the adhesive force of silicon substrate increases with relative humidities and the adhesive force of TiO2 thin films only increases slightly with relative humidity. Research showed that surfaces with more hydrophobic property revealed the lower adhesive and friction forces.  相似文献   

5.
We developed a simple method to prepare gold-nanoparticle-doped titanium dioxide (GTD) sol-gel solution. The optimized GTD sol-gel solutions were a mixture of TEA, titanium (IV) butoxide, HAuCl4, and deionized water in 0.3:1:0.5:3 volume ratios at room temperature. Using this sol-gel solution, we fabricated the GTD photonic crystal structure by infiltrating this solution by dip-coating into a polystyrene (PS) template. It was found that high quality of thin films was obtained by infiltrating twice the PS templates with the synthesized GTD sol-gel solutions. Energy dispersive X-ray spectroscopy and X-ray photoelectron spectra revealed the doping of TiO2 and Au in the GTD photonic crystals. X-ray diffraction showed that TiO2 and Au existed as anatase phase and metallic Au phase, respectively, in the GTD photonic crystals. The results indicated that the gold nanoparticles were doped into the framework of the photonic crystals.  相似文献   

6.
In this work, we report on the investigation of the effect of dispersion of zinc selenide (ZnSe) nanocrystallites into polystyrene (PS) and silica (SiO2) thin films on their structural, morphological and photoluminescence properties. The ZnSe/PS nanocomposites thin films were synthesized by a direct dispersion of ZnSe crystallites into polymers solution, whereas the ZnSe–SiO2 films were prepared on glass substrates by the sol–gel dip-coating technique. X-ray diffraction (XRD), Fourier transform infrared spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-rays (EDX), UV–visible spectrophotometry and photoluminescence spectroscopy (PL) techniques have been used to study the structural, morphological and optical properties of the prepared nanocomposite thin films. XRD patterns have demonstrated the incorporation of cubic ZnSe in both organic and inorganic matrices. SEM micrographs have indicated that ZnSe dispersion in the films is homogeneous. UV–visible absorption spectra of the nanocomposite thin films have put into evidence that the dispersion of ZnSe nanocrystals in the thin film matrices improved their optical absorption. Room temperature PL spectra have shown that the addition of ZnSe enhanced the UV emission of PS and all the emission of SiO2 thin films.  相似文献   

7.
To find the percolation threshold for the electrical resistivity of metallic Ag-nanoparticle/titania composite thin films, Ag-NP/titania composite thin films, with different volumetric fractions of silver (0.26 ≤ φAg ≤ 0.68) to titania, were fabricated on a quartz glass substrate at 600 °C using the molecular precursor method. Respective precursor solutions for Ag-nanoparticles and titania were prepared from Ag salt and a titanium complex. The resistivity of the films was of the order of 10−2 to 10−5 Ω cm with film thicknesses in the range 100–260 nm. The percolation threshold was identified at a φAg value of 0.30. The lowest electrical resistivity of 10−5 Ω cm at 25 °C was recorded for the composite with the Ag fraction, φAg, of 0.55. X-ray diffraction (XRD), field-emission scanning electron microscope (FE-SEM), and transmission electron microscopic (TEM) evaluation of the effect of the morphology and the nanostructures of the Ag nanoparticles in the composite thin films on the electrical resistivity of the film revealed that the films consist of rutile, anatase, and metallic Ag nanoparticles homogeneously distributed in the titania matrix. It could be deduced that the electrical resistivity of the thin films formed at 600 °C was unaffected by the anatase/rutile content within the thin film, whereas the shape, size, and separation distance of the Ag nanoparticles strongly influenced the electrical resistivity of the Ag-nanoparticle/titania composite thin films.  相似文献   

8.
《Thin solid films》1987,149(1):29-48
Thin gold films are potentially important for metallizations in microelectronic devices because of the high activation energy of gold for electrotransport. A high activation energy ensures a longer lifetime of microelectronic devices compared with those in which aluminum metallizations are used. When electromigration is no longer the principal failure mechanism, other failure mechanisms, caused by d.c. stressing, might become important. One possibility is grain boundary grooving. Preliminary studies have shown that grain boundary grooving in thin gold films is prevented by inserting an indium underlay between the gold film and the substrate. The objective of this work was to investigate the mechanisms for the prevention of grain boundary grooving in In/Au composite films by comparing the microstructural evolution of pure gold films with In/Au composite films during isothermal annealing. Microstructures were characterized in terms of grain size, grain size distribution, preferred orientation and surface morphology utilizing transmission electron microscopy (TEM), cross-sectional TEM, scanning electron microscopy and X-ray diffraction. The chemical reactions and the distributions of the phases were monitored by selected area diffraction in TEM, and by Auger electron spectroscopy sputter profiling.It was found that the principal mechanisms that inhibit grain boundary grooving in IN/Au composite films area as follows.
  • 1.(1) Indium underlays modify the microstructure of gold films by randomizing the orientation of the grains, refining the grain size, narrowing the grain size distribution and roughening the surface of the gold films.
  • 2.(2) Indium is redistributed on gold films and forms In2O3 on the free surface and within the film during air annealing.
  • 3.(3) The In2O3 on the surface “caps” the surface of gold films and limits mass transport during annealing.
  • 4.(4) The In2O3 within the gold film, presumably residing at grain boundaries, impedes grain growth by pinning the grain boundary migration.
  相似文献   

9.
Ordered porous TiO2 thin films were fabricated on conductive glass by using colloid crystal template of polystyrene (PS) spheres. Microstructural characterization by scanning electron microscopy techniques was carried out to explore the porous structural changes due to the PS templates which could be controlled by adjusting the drawing rate. Photovoltaic performance was measured and this revealed the effect of microstructural changes. The results showed that monolayer porous TiO2 films and multilayer porous TiO2 films could be successfully prepared. And multilayer porous TiO2 films provided large surface area for dye absorption to increase the efficiency of dye-sensitized solar cells (DSSCs) which were assembled by porous TiO2 films.  相似文献   

10.
The structure of crazes grown in polystyrene (PS) immersed inn-heptane and methanol at room temperature has been determined using refractive index measurements, transmission electron microscopy, and fractographic analysis of craze fracture surfaces.n-heptane crazes in thin films exhibit a low number density of thick, load-bearing fibrils whereas methanol crazes consist of a highly interconnected network of fibrils not unlike the craze structure found in crazes grown in air. A row of large voids at the centre line of the craze which is typical of the structure observed in air crazes is not found, however, in either methanol orn-heptane crazes, indicating a different growth mechanism for the solvent crazes. The craze structure found in thin films is in agreement with the void contents determined from refractive index measurements and with the results from scanning electron microscopy of fracture surfaces of bulk crazes grown with methanol andn-heptane. Glass transition temperature measurements of equilibrium swollen PS films giveT g=91° C for methanol andT g=6° C forn-heptane. The results suggest that the structure of crazes grown with slowly diffusing crazing agents (methanol andn-heptane) is strongly dependent on whether the growth temperature is above or belowT g, the glass transition temperature of the plasticized region just ahead of, and in, the craze. IfT g is below the growth temperature, weak crazes are formed with a large void content. During the growth, thin fibrils break by viscous flow leaving only a small number of load-bearing fibrils. The stress in the neighbourhood of the growing craze is strongly relieved favouring propagation of a single craze. IfT g is above the growth te'mperature, strong crazes are formed with the fibrils strain-hardened during the growth process. There is hardly any change in stress next to the craze and therefore multiple crazing (craze bundles) is favoured over the propagation of a single craze.  相似文献   

11.
《Thin solid films》2006,494(1-2):274-278
In the present study, nanocrystalline TiO2/Ag composite thin films were prepared by a sol–gel spin coating technique. While, by introducing polystyrene (PS) microspheres, porous TiO2/Ag films were obtained after calcining at a temperature of 500 °C. The as-prepared TiO2 and TiO2/Ag thin films were characterized by X-ray diffractometry, and scanning electron microscopy to reveal the structural and morphological differences. In addition, the photocatalytic properties of these films were investigated by degrading methylene blue under UV irradiation.After 500 °C calcination, the microstructure of PS-TiO2 film without Ag addition exhibited a sponge-like microstructure while significant sintering effect was noticed with Ag additions and the films exhibited a porous microstructure. Meanwhile, coalescence of nanocrystalline anatase-phase TiO2 can be observed with respect to the sharpening of XRD diffraction peaks. The photodegradation of porous TiO2 doped with 1 mol% Ag exhibited the best photocatalytic efficiency where 72% methylene blue can be decomposed after UV exposure for 12 h.  相似文献   

12.
Nano porous silicon (PS) was formed on p-type monocrystalline silicon of 2–5 Ω cm resistivity and (100) orientation by electrochemical anodization method using HF and ethanol as the electrolytes. High density of surface states, arising due to its nano structure, is responsible for the uncontrolled oxidation in air and for the deterioration of the PS surface with time. To stabilize the material PS surface was modified by a simple and low cost chemical method using PdCl2 solution at room temperature. X-ray photoelectron spectroscopy (XPS) was performed to reveal the chemical composition and the relative concentration of palladium on the nanoporous silicon thin films. An increase of SiO2 formation was observed after PdCl2 treatment and presence of palladium was also detected on the modified surface. IV characteristics of Al/PS junction were studied using two lateral Al contacts and a linear relationship was obtained for Pd modified PS surface. Stability of the contact was studied for a time period of around 30 days and no significant ageing effect could be observed.  相似文献   

13.
Transmission electron microscopy (TEM) has been used to investigate the effect of laponite clay on microdeformation in thin latex-based polystyrene (PS) films, in which the laponite was concentrated at the original interfaces between the PS particles. At room temperature, a transition was observed from crazing in pure PS to a coarser fibrillar deformation mode as the laponite content increased. Moreover, whereas pure PS showed increasingly homogeneous deformation as T approached Tg, the fibrillar deformation zones observed in the nanocomposites persisted up to T just below Tg, and there was some evidence for yielding behaviour at even higher T in the presence of laponite. The macroscopic fracture resistance of the films, as assessed from double edge-notched tensile specimens, initially increased with laponite content, but decreased for laponite contents greater than 5 wt% with respect to the styrene monomer. This was attributed to a decrease in local ductility, consistent with the observation of reduced deformation ratios in the deformation zones by TEM, and to the intrinsic weakness of the laponite stacks and/or the PS-laponite interface. Thus, specimens with laponite contents comparable with the estimated threshold for percolation of contacts between the laponite stacks showed extremely brittle behaviour, associated with crack propagation along the interfaces between the latex particles.  相似文献   

14.
Au and Pt nanoparticle modified SnO2 thin films were prepared by the sol-gel method on glass substrates targeting sensing applications. Structural and morphological properties of these films were studied using X-ray Diffraction and Scanning Electron Microscopy. It was proved that the films crystallized in tetragonal rutile SnO2 crystalline structure. Scanning Electron Microscopy observations showed that the metallic clusters' dimensions and geometry depend on the kind of the metal (Au or Pt) while SnO2 films surface remains almost the same: nanostructured granular very smooth. Optical properties of the films were studied using UV-visible spectroscopy. The modified SnO2 films were tested as hydrogen sensors. The response of SnO2, SnO2-Au and SnO2-Pt thin films against hydrogen was investigated at different operating temperatures and for different gas concentrations. The addition of metal nanoparticles was found to decrease the detection limit and the operating temperature (from 180 °C to 85 °C), while increasing the sensing response signal.  相似文献   

15.
The fabrication of devices with lead salts and their alloys with detecting and lasing capabilities has been an important technological development. The high quality polycrystalline thin films of PbTe1−x S x with variable composition (0 ≤ x ≤ 1) have been deposited onto ultra clean glass substrates by vacuum evaporation technique. Optical, structural and electrical properties of PbTe1−x S x thin films have been examined. Absorption coefficient and band gap of the films were determined by absorbance measurements in wavelength range 2,500–5,000 nm using FTIR spectrophotometer. Sample nature, crystal structure and lattice parameter of the films were determined from X-ray diffraction patterns. DC conductivity and activation energy of the films were measured in temperature range 300–380 K through I–V measurements.  相似文献   

16.
For the purpose of building very sensitive light and phonon detectors, as e.g. applied in the Dark Matter (DM) experiment CRESST (Cryogenic Rare Event Search with Superconducting Thermometers), transition edge sensors (TESs) in combination with a massive absorber crystal are used. To ensure high sensitivity of the detectors, low heat capacities, i.e. low working temperatures of about 10 mK are aimed at. Therefore, TESs made of tungsten thin films exhibiting the alpha-tungsten (α-W) phase with transition temperatures of T c =10–15 mK are required. We have produced tungsten thin films with T c in the range of 25–55 mK by rf-sputtering. To decouple the thermometer production from the choice of the target material and to avoid heating cycles of the absorber crystal, a composite design for detector production is applied. The composite design includes fabrication of the TES on a separate substrate and then attaching of this separate TES to a massive absorber crystal by gluing. For this purpose small sapphire substrates are used for the deposition of the TES. Properties of tungsten thin films grown with the rf-sputtering technique as well as first results of composite detectors built with these films acting as TESs will be presented.   相似文献   

17.
In this study, we have studied the effect of repeated annealing temperatures on TiO2 thin films prepared by dip-coating sol–gel method onto the glasses and silicon substrates. The TiO2 thin films coated samples were repeatedly annealed in the air at temperatures 100, 200, and 300 °C for 5 min period. The dipping processes were repeated 5 to 10 times in order to increase the thickness of the films and then the TiO2 thin films were annealed at a fixed temperature of 500 °C for 1 h period. The effect of repeated annealing temperature on the TiO2 thin films prepared on glass substrate were investigated by means of UV–VIS spectroscopy, X-ray diffraction (XRD), and atomic force microscopy (AFM). It was observed that the thickness, average crystallite size, and average grain size of TiO2 samples decreased with increasing pre-heating temperature. On the other hand, thickness, average crystallite size, and average grain size of TiO2 films were increased with increasing number of the layer. Al/TiO2/p-Si metal–insulator–semiconductor (MIS) structures were obtained from the films prepared on p-type single silicon wafer substrate. Capacitance–voltage (CV) and conductance–voltage (G/ω–V) measurements of the prepared MIS structures were conducted at room temperature. Series resistance (R s) and oxide capacitance (C ox) of each structures were determined by means of the CV curves.  相似文献   

18.
The irradiation effect in Ni3N/Si bilayers induced by 100 MeV Au ions at fluence 1.5 × 1014 ions/cm2 was investigated at room temperature. Grazing incidence X-ray diffraction determined the formation of Ni2Si and Si3N4 phases at the interface. The roughness of the thin film was measured by atomic force microscopy. X-ray reflectivity was used to measure the thickness of thin films. X-ray photoelectron spectroscopy has provided the elemental binding energy of Ni3N thin films. It was observed that after irradiation (Ni 2p3/2) peak shifted towards a lower binding energy. Optical properties of nickel nitride films, which were deposited onto Si (100) by ion beam sputtering at vacuum 1.2 × 10−4 torr, were examined using Au ions. In-situ IV measurements on Ni3N/Si samples were also undertaken at room temperature which showed that there is an increase in current after irradiation.  相似文献   

19.
Silane coupling reagent (3-mercaptopropyl trimethoxysilane (MPTS)) was prepared on silicon substrate to form two-dimensional self-assembled monolayer (SAM) and the terminal–SH group in the film was in situ oxidised to–SO3H group to endow the film with good chemisorption ability. Thus, TiO2 thin films were deposited on the oxidised MPTS-SAM to form composite thin films, making use of the chemisorption ability of the–SO3H group. Atomic force microscope (AFM), and contact angle measurements were used to characterise TiO2 films. Adhesive force and friction force of TiO2 thin films and silicon substrate were measured under various applied normal loads and scanning speed of AFM tip. Results showed that the friction force increased with applied normal loads and scanning speed of AFM tip. In order to study the effect of capillary force, tests were performed in various relative humidity (RH). Results showed that the adhesive force of silicon substrate increases with RH and the adhesive force of TiO2 thin films only increases slightly with RH. Research showed that surfaces with more hydrophobic property revealed the lower adhesive and friction forces.  相似文献   

20.
Pb(Zr0.52Ti0.48)O3–Ni0.8Zn0.2Fe2O4 (PZT–NZFO) multilayered thin films with various volume fractions of the PZT phase (100, 74, 58, 48, 33, and 0%) were prepared on Pt/Ti/SiO2/Si substrates using sol–gel spin-coating method. X-ray diffraction shows polycrystalline structure and scanning electron microscopy reveals good multilayer morphology of the composite thin film as annealed at 700 °C in air. The thickness of the composite films was estimated in the range of ~400 to ~600 nm. The ferroelectric and magnetic properties were measured as function of the volume fractions of the PZT phase. The magnetoelectric (ME) effect was investigated under various bias magnetic fields. The maximum ME voltage coefficient (α E  = dE/dH) is 278 mV/cmOe for the composite film with the volume fractions of the PZT phase of ~48%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号