首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Core‐shell Fe/Al composites were successfully prepared by chemical liquid deposition with iron carbonyl [Fe(CO)5] as precursor and kerosine as oil phase medium. Scanning electron microscopy (SEM), X‐ray diffractometer (XRD), and simultaneous thermogravimetry‐differential thermal analysis (TG‐DTA) were employed to characterize the samples and assess their thermal properties. The results indicated that the aluminum core was coated compactly by an iron layer and the the oxidation kinetics of the obtained composite powders showed a significant improvement compared to pure aluminum powders. The thermal reactivity of Fe/Al composites with oxygen is obviously higher than those of pure aluminum powders, which means that after coating much more heat can be released in the same temperature range and the heat release happens faster and more concentrated. On the basis of the results, a possible formation of the coating is proposed and a thermal reaction mechanism is also discussed.  相似文献   

2.
The effectiveness of a novel coating method in providing fine iron powder particles with a protective barrier against rapid oxidation was systematically studied. Particles were individually coated with an alumina‐based (Al2O3) ultra‐thin film using the Atomic Layer Deposition method. The oxidation resistance of the coating layer was found to be greatly dependent on the film thickness. Furthermore, for each film thickness there was a corresponding temperature above which the film drastically lost its protective effectiveness, primarily due to cracking caused by the thermal expansion mismatch between the particle and the alumina film. This problem was largely overcome when, instead of Al2O3, the protective film was generated from alternating layers of Al2O3/ZnS to ensure that the thermal expansion properties of the resultant film matched that of iron. The technique employed in this study is quite robust and can be adapted for combustion prevention in other types of metal powders.  相似文献   

3.
分别以Al粉、Al-12Si、Al-20Si合金粉为相变介质,粉煤灰为基体材料,采用混合烧结法在空气、真空两种烧结氛围下制备金属/陶瓷基高温定形复合相变材料,探讨相变介质中硅铝相对含量及烧结氛围对材料蓄热性能的影响。结果表明:分别用三种金属粉制备复合相变材料时,Al的氧化难以避免,致使Si的相对含量均超过共晶点组成,凝固时其状态点始终处于共晶相+Si相的两相区,未被氧化的Al都转变成为Al-Si共晶相。空气中烧结有利于Al形成致密氧化膜从而阻止其进一步反应,材料的密度、相变潜热都比真空中烧结高。三种复合相变材料中,由Al粉制备的热稳定性最差,由Al-12Si合金粉制备的相变潜热、保留率最高,热稳定性及蓄热性能突出。  相似文献   

4.
为改善硼粉(B)的性能和纳米氧化铁(Fe_2O_3)在固体推进剂中的分散性,用静电喷雾法制备了B/Fe_2O_3/NC复合物,采用扫描电镜(SEM)表征了复合物的表面形貌,用TG-DSC分析了复合物的热性能及其对HTPB/AP推进剂热性能的影响,并用燃速测试和密闭爆发器实验研究了该复合物对HTPB/AP推进剂燃烧性能的影响。结果表明,所制备的B/Fe_2O_3/NC复合物均以团聚体的形式存在,复合物中B的活性提高,其氧化反应温度提前;团聚硼粉对HTPB/AP推进剂燃烧性能的改善效果明显优于原料硼粉;加入Fe_2O_3后,会进一步改善含硼推进剂的燃烧性能,而且随Fe_2O_3含量的增加,在密闭爆发器中HTPB/AP推进剂达到最高压力所需的时间逐渐减小。当Fe_2O_3的质量分数为8%时,推进剂在常压空气中的燃速最大,为不添加B/Fe_2O_3/NC复合物的HTPB/AP推进剂的2.77倍。B/Fe_2O_3/NC复合物对推进剂的热分解具有一定催化作用,且随Fe_2O_3含量的增加催化作用增强。  相似文献   

5.
Layered aluminum double hydroxide chloride sorbents, LiCl∙Al2(OH)6.nH2O, Li-LDH, have shown promising application in selective Li extraction from geothermal brines. Maintaining LiCl uptake capacity and retaining a long cycle life are critical to widespread application of sorbent materials. To elucidate the energetics of Li capture, enthalpies of LDH with different Li content have been measured by acid solution calorimetry. The formation enthalpies generally become less exothermic as the Li content increases, which indicates that Li intercalation destabilizes the structure, and the enthalpies seem to approach a limit after the Li content x = 2Li/Al exceeds 1. To improve stability, metal doping of the aluminum LDH structure with iron was performed. Introduction of a metal with greater electron density but a similar ionic radius was postulated to improve the stability of the LDH crystal structure. The calorimetric results from Fe-doped LDH samples corroborate this as they are more exothermic than LDH-lacking Fe. This suggests that Fe doping is an effective way to stabilize the LDH phase.  相似文献   

6.
The thermal behaviour in air of two Al nanopowders, Alss and Alsstef, a Teflon coated version of Alss, was determined using DSC, TG‐DTA and accelerating rate calorimetry (ARC). Compared to two larger Al nanopowders, for which hazards results have been reported, Alss and Alsstef are less reactive in air, possibly due to the nature of the passivating and coating layers. The stability of Alss and Alsstef in a wet environment was also investigated using ARC. Alss is very reactive with water, which could lead to a problem of aging in a humid atmosphere. The ”coating” of Alsstef significantly reduces the reactivity of Alss with water. Outgassing behaviour of mixtures of ADN, GAP and various Al powders was investigated using TG‐DTA‐FTIR‐MS. No chemical interactions were observed between ADN/Al, GAP/Al and ADN/GAP. The effect of the addition of Al nanopowders on the thermal decomposition of ADN and GAP was studied using ARC. Al nanopowders had a minor effect on the thermal stability of ADN, while the addition of Alss and Alsstef lowered the onset temperature of GAP. The electrostatic discharge (ESD), impact and friction sensitivities of Al nanopowders and their mixtures with ADN and GAP were also determined. Al nanopowders appear to sensitize ADN to ESD, impact and friction.  相似文献   

7.
为了提高镁铝合金与水的反应效率,采用氟化物对镁铝合金粉进行表面包覆,利用扫描电镜、X射线衍射仪和粒度分析仪对合金粉与高温水反应产物进行表征,对比研究了高温下不同比例的氟化物对镁铝合金与水催化反应效率的影响。结果表明,包覆氟化物的镁铝合金与高温水反应产物的粒径减小,分散性明显改善;固相燃烧产物中主要包含Al_2MgO_4、MgO和Al,表明Al未完全反应;合金粉包覆氟化物后铝的反应效率明显提高,其中,包覆质量分数2%氟橡胶和2%有机氟化物的合金粉反应效率高达89.7%,与未包覆样品相比提高了14.6%。  相似文献   

8.
为了控制熔融铝合金直接氧化法制备Al2O3/Al复合材料的氧化生长,采用ZnO,SiO2和MgO3种表面引发剂,研究它们对Al-Si-Zn合金氧化生长过程及Al2O3/Al复合材料组织形貌的影响.结果表明:与未使用引发剂时相比,使用SiO2,ZnO或MgO表面引发剂制备的粉末都能显著地缩短Al-Si-Zn合金的氧化生长孕育期,提高合金氧化生长速率,改善复合材料的胞状生长方式,提高复合材料的组织均匀度和致密度,为实际生产应用提供了依据.实验发现:ZnO表面引发剂的使用效果最为突出,其最佳添加量为12mg/cm2.  相似文献   

9.
This paper presents an investigation of the performance and stability for oxygen reduction on in situ oxidized Ni alloys, specially focused on 95 at % Ni + 5 at % Al and 85 at % Ni + 15 at % Al alloy electrodes in Li/Na carbonate eutectic. Test specimens of the alloys were prepared as thin film electrodes sputtered onto Au substrates. In situ oxidation of alloy electrodes and electrochemical measurements for oxygen reduction on the electrodes were performed in the free-volume melt at 923 K. It was found that the in situ oxidized Ni + Al alloys exhibit higher performance for the oxygen reduction than the NiO without Al. Electrochemical fractal analysis (EFA) revealed higher oxide film stability of the Ni + Al alloys in comparison to NiO electrodes. The surface morphology of the alloy specimen after oxidation was investigated with SEM and AFM.  相似文献   

10.
Polyimide/Al2O3 (PI/Al2O3) nanocomposite films based on pyromellitic dianhydride and 4,4′‐oxydianiline were fabricated by adding different proportions of nano‐Al2O3 inorganic particles via in situ polymerization. Microstructural analysis by scanning electron microscope (SEM) showed that the inorganic particles were homogenously dispersed in the PI matrix when mixed with appropriate amount of nano‐Al2O3. Fourier transform infrared spectroscopy and X‐ray diffraction analysis were also used to investigate the effect of nano‐Al2O3 on the polymerization process. The obtained composite films and pure film were characterized by thermogravimetry analysis, and the experimental results indicated that when comparing with pure film, the nanocomposite films displayed a better thermal stability than the pure one. Moreover, results also showed that the thermal stability of composite films steadily improved with increased content of nano‐Al2O3 particle. The electrical property test demonstrated that the composite films performed improving electrical breakdown strength and corona resistance. The microstructure changes of pure film and PI/Al2O3 nanocomposite films during corona aging have been analyzed by SEM. POLYM. COMPOS., 37:763–770, 2016. © 2014 Society of Plastics Engineers  相似文献   

11.
利用相图设计配方,采用熔融法制备LFP-玻璃(锂铁磷酸盐玻璃)粉末。将玻璃粉与柠檬酸混合,在氮气气氛中热处理制备LiFePO4/C复合材料,并考察玻璃在氮气气氛、空气气氛热处理时样品的组成与形貌变化。选用热重/差示扫描量热仪(TG/DSC)、X-射线衍射(XRD)、扫描电子显微镜(SEM)、能谱仪(EDS)对样品进行热性能分析、物相分析、微观形貌分析和元素成分分析。结果显示:玻璃粉在空气气氛中热处理获得Li3Fe2(PO4)3和Fe2O3;玻璃粉在氮气条件下热处理获得Li3Fe2(PO4)3与LiFePO4;玻璃粉与柠檬酸混合在氮气气氛中热处理获得LiFePO4/C复合材料;热处理气氛对LFP-玻璃析晶种类与形貌有直接影响。  相似文献   

12.
Three kinds of particles of organically modified montmorillonite (OMT) intercalated with iron oxides (Fe‐OMT), hexadecyltrimethylammonium bromide (CTAB) and ethylamine (EA)‐modified zirconium phosphate (ZrP) intercalated with iron oxides, named as Fe‐ZrP(CTAB) and Fe‐ZrP(EA), respectively, were synthesized through a simple route. Characterization of these particles showed that they had a mesoporous lamellar structure with high specific surface area and mesoporous volume. The influence of these particles on the thermal properties and combustion effluents of polystyrene (PS) were comparatively studied with the widely used OMT. The results suggested that the presence of Fe‐OMT, Fe‐ZrP(CTAB), and Fe‐ZrP(EA) imparted PS with an increased thermal degradation onset temperature and a higher glass transition temperature, but they could not increase the thermo‐oxidative stability remarkably as OMT did. Meanwhile, Fe‐ZrP(CTAB) and Fe‐ZrP(EA) exhibited stronger acidity and higher efficiency in preventing the condensed phase oxidation than either OMT or Fe‐OMT, since they imparted the PS composites with a higher ratio of CO/CO2 in the combustion effluents. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42737.  相似文献   

13.
A comparison of various experimental results for combustionrelated properties evaluation, including burning rates, deflagration heat, flame structures and thermal decomposition properties, of AP/RDX/Al/HTPB composite propellants containing nano metal powders is presented. The thermal behavior of n‐Al (nano grain size aluminum) and g‐Al (general grain size aluminum i.e., 10 μm) heated in air was also investigated by thermogravimetry. The burning rates results indicate that the usage of bimodal aluminum distribution with the ratio around 4 : 1 of n‐Al to g‐Al or the addition of 2% nano nickel powders (n‐Ni) will improve the burning behavior of the propellant, while the usage of grading aluminum powders with the ratio 1 : 1 of n‐Al to g‐Al will impair the combustion of the propellant. Results show that n‐Al and n‐Ni both have a lower heating capacity, lower ignition threshold and shorter combustion time than g‐Al. In addition n‐Al is inclined to burn in single particle form. And the thermal analysis results show that n‐Ni can catalyze the thermal decomposition of AP in the propellant. The results also confirm the high reactivity of n‐Al, which will lead to a lower reaction temperature and rather higher degree of reaction ratio as compared with g‐Al in air. All these factors will influence the combustion of propellants.  相似文献   

14.
A low infrared-emissivity coating was prepared using modified Al powder and polyurethane as metallic pigment and adhesive. Al powder was coated with polyethylene wax by the flux-capping method to reduce the emissivity and gloss of the coating. The surface morphology and chemical composition of pure and modified Al powders were characterized by scanning electron microscopy and X-ray diffraction. The infrared emissivity of the product was measured by an infrared emissometer. The influences of the modified Al powder content, substrate material, coating thickness, and aging time on infrared emissivity were systematically investigated. The results indicate that modified Al powder decreases not only the gloss of the coating, but also its emissivity within the wavelength range of 8–14 μm. The polyethylene wax/Al composites have a homogenous sheet structure at 30 wt.% Al content, and a lower infrared emissivity. The optimum content of modified Al powder is around 18 wt.%. The coating exhibits a lower emissivity value and excellent optical properties. The infrared emissivity of the composite coating significantly increases with increased thickness, and approaches a constant value when the thickness is more than 80 μm. Accelerated aging test results show that with increased aging time, the coating with modified Al powder has a better aging resistance and lower infrared emissivity than that with pure Al powder.  相似文献   

15.
利用浸涂法在TC4钛合金表面制备了高温防氧化玻璃-陶瓷涂层。采用金相观察(OM)、扫描电镜(SEM)、X射线衍射(XRD)、电子探针分析(EPMA)对其性能进行了表征。该涂料是以硅酸盐玻璃为主体,硅酸钠为粘结剂制备而成的料浆悬浮体。在500~1 000℃的温度范围内,与没有涂层保护的基体相比,在涂层保护下基体的氧化程度至少可减轻85%。研究表明:随温度升高,涂层逐渐熔融,得到一层致密的保护层,涂层中依次出现Al2O3、TiO2、硅酸盐、钛铝、硅铝化合物等物相,使得涂层具有很好的高温流动性和稳定性,有效阻挡了氧气对基体的侵蚀,且涂层对基体的沾污甚微。涂层与基体的热膨胀系数(CTE)失配达到87%,涂层在使用后可以实现完全自剥落。  相似文献   

16.
In this paper,both oxidation and corrosion resistance of low-carbon magnesia-carbon materials containing 4.0wt% graphite with metallic Al and Mg-Al alloy powders as antioxidants were investigated.Meanwhile,the microstructures of samples corroded by slag were observed with optical microscope as well.The test results revealed the properties of oxidation and corrosion resistance of low-carbon magnesia-carbon materials could be improved obviously by adding metal Al powder and Mg-Al alloy powder.The rule of improving oxidation resistance was illegibility when metal Al powder and Mg-Al alloy powder were added together.It was harmful to corrosion resistance by mixed adding metal Al powder and Mg-Al alloy powder into the materials,at the same time,the corrosion resistance would decreased with the increasing of Mg-Al alloy content.The corrosion resistance of samples with 0.5wt% or 3.0wt% Mg-Al alloy was better. The oxidation resistance and corrosion resistance of materials with metal Al or Mg-Al alloy respectively were better than that with mixed metal Al and Mg-Al alloy. As a result, Mg-Al alloy was more suitable for low-carbon composite materials than metal Al as additives.  相似文献   

17.
以均化矾土、板状刚玉、碳化硅、石墨为主要原料,利用酚醛树脂作为结合剂,研究了复合抗氧化剂(硅粉、铝粉、碳化硼)的引入形式及加入量对Al2O3-SiC-C砖的性能影响.结果表明:添加复合抗氧化剂可提高Al2O3-SiC-C砖的高温抗折强度,随铝含量的增加,对提高高温抗折强度的提高越明显;抗氧化效果从强到弱依次为:添加碳化硼的复合抗氧化剂>复合铝硅抗氧化剂>金属铝>金属硅;在复合抗氧化剂中引入碳化硼能够有效的提高Al2O3-SiC-C砖的抗渣侵蚀性能及热震稳定性.  相似文献   

18.
纳米氧化锌表面包覆氧化铝复合粉体制备及其光催化活性   总被引:14,自引:0,他引:14  
在制备ZnO的前驱物 ? 碱式碳酸锌的过程中原位包覆Al2O3,与在ZnO粉体表面包覆的传统工艺相比减少了多次引起粒子团聚的工艺过程,改善了包覆效果. TEM观察表明,包覆的ZnO复合粉体粒径为50 nm左右、包覆层厚为3~5 nm. XPS分析表明,包覆层为Al2O3和ZnO. 光催化活性的测试表明,包覆后的纳米ZnO光催化活性得到了明显降低. 包覆后的纳米ZnO紫外线吸收性能与未包覆的纳米ZnO基本相同,保证了其优异的紫外吸收性能.  相似文献   

19.
Al interlayer is precoated on pure iron or steel substrates for diamond film deposition. Microstructures and compositions around the interfacial region of diamond film/Al interlayer/substrates have been comprehensively analyzed by transmission electron microscopy (TEM). Using only a simple Al thin layer is not sufficient, as the integrity of the Al interlayer is easily destroyed during scratching pretreatment. Consequently, the continuity of diamond film is damaged and local carburization corrosion occurs on the substrate. The carburization products primarily consist of voluminous graphite and a large number of fine particles of iron carbide are dispersed at the interfacial region, inducing deteriorated interfacial adhesion. To solve it, an interdiffusion pretreatment of Al interlayer under annealing vacuum is required. The results show that a Fe–Al alloy facilitated the formation of a protective Al oxide layer and improved the diamond film deposition. However, the surface aluminizing process needs to be further optimized, as indicated by a comparison with the diamond deposition directly on Fe–Cr–Al bulk alloy substrate.  相似文献   

20.
采用水热法制备了纳米Fe_2O_3,并用超声分散法将其与纳米Al颗粒复合制备了超级铝热剂Al/Fe_2O_3,利用X-射线粉末衍射(XRD)、透射电子显微镜(TEM)、扫描电镜及能量散射光谱仪(SEM-EDS)对复合物的物相、组成、形貌和结构进行了分析表征,采用差示扫描量热法(DSC)和热红联用技术(TG-FTIR)研究了Al/Fe_2O_3对硝化棉(NC)热分解过程的影响。结果表明,Al/Fe_2O_3-NC和NC的热分解过程遵循Avrami-Erofeev方程f(α)=1.5(1-α)[-ln(1-α)]1/3;超级铝热剂Al/Fe_2O_3可降低硝化棉的表观活化能、临界点火温度和临界爆炸温度,在促进硝化棉O-NO_2键断裂和凝聚相二次自催化反应中起到至关重要的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号