首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 69 毫秒
1.
Biocomposites are prepared from a cheap, renewable natural fiber, coir (coconut fiber) as reinforcement with a biodegradable polyester amide (BAK 1095) matrix. In order to have better fiber‐matrix interaction the fibers are surface modified through alkali treatment, cyanoethylation, bleaching and vinyl grafting. The effects of different fiber surface treatments and fiber amounts on the performance of resulting bio‐composites are investigated. Among all modifications, cyanoethylated coir‐BAK composites show better tensile strength (35.50 MPa) whereas 7% methyl methacrylate grafted coir‐BAK composites show significant improvement in flexural strength (87.36 MPa). The remarkable achievement of the present investigation is that a low strength coir fiber, through optimal surface modifications, on reinforcement with BAK show an encouraging level of mechanical properties. Moreover, the elongation at break of BAK polymer is considerably reduced by the incorporation of coir fibers from nearly 400% (percent elongation of pure BAK) to 16‐24% (coir‐BAK biocomposites). SEM investigations show that surface modifications improve the fiber‐matrix adhesion. From biodegradation studies we find that after 52 days of soil burial, alkali treated and bleached coir‐BAK composites show significant weight loss. More than 70% decrease in flexural strength is observed for alkali treated coir‐BAK composites after 35 days of soil burial. The loss of weight and the decrease of flexural strength of degraded composites are more or less directly related.  相似文献   

2.
Coir, an important lignocellulosic fiber, can be incorporated in polymers like unsaturated polyester in different ways for achieving desired properties and texture. But its high level of moisture absorption, poor wettability and insufficient adhesion between untreated fiber and the polymer matrix lead to debonding with age. In order to improve the above qualities, adequate surface modification is required. In our present work, fiber surface modification was effected through dewaxing, alkali (5%) treatment, aqueous graft copolymerization of methyl methacrylate (MMA) onto 5% alkali treated coir for different extents using CuSO4 – NaIO4 combination as an initiator system and cyanoexhylation with a view to improve the mechanical performance of coir‐polyester composites. Mechanical properties like tensile strength (PS), flexural strength (ES) and impact strength (IS) of the composites as a function of fiber loading and fiber surface modification have been evaluated. Composites containing z5 wt% of fiber (untreated) improved tensile and flexural strength by 30% and 27% respectively in comparison to neat polyester. The work of fracture (impact strength) of the composite with 25 wt% fiber content was found to be 967 J/m. The elongation at break of the composites exhibits an increase with the introduction of fiber, All types of surface modification result In improved mechanical properties of the composites. Significant improvement in mechanical strength was also observed for composites prepared from 5% PMMA grafted fiber.  相似文献   

3.
This article concerns the effectiveness of various types and degrees of surface modification of sisal fibers involving dewaxing, alkali treatment, bleaching cyanoethylation and viny1 grafting in enhancing the mechanical properties, such as tensile, flexural and impact strength, of sisal‐polyester biocomposites. The mechanical properties are optimum at a fiber loading of 30 wt%. Among all modifications, cyanoethylation and alkali treatment result in improved properties of the biocomposites. Cyanoethylated sisal‐polyester composite exhibited maximum tensile strength (84.29 MPa). The alkali treated sisal‐polyester composite exhibited best flexural (153.94 MPa) and impac strength (197.88 J/m), which are, respectively, 21.8% and 20.9% higher than the corresponding mechanical properties of the untreated sisal‐polyester composites. In the case of vinyl grafting, acrylonitrile (AN)‐grafted sisal‐polyester composites show better mechanical properties than methyl‐methacrylate (MMA)‐grafted sisal composites. Scanning electron microscopic studies were carried out to analyze the fiber‐matrix interaction in various surface‐modified sisal‐polyester composites.  相似文献   

4.
This paper presents a comparison between particulate filled (SiC particles) and unfilled glass polyester composites on the basis of their mechanical and thermo-mechanical properties. The results show that particulate filled composites have a decreasing trend in mechanical properties when compared to the unfilled glass polyester composites. In particulate filled composites, the tensile and flexural strength of the composites decrease with the addition of 10 wt.-% SiC particles but increase with 20 wt.-% SiC particles. In the case of the unfilled glass polyester composite, the tensile and flexural strength of the composites increase with an increase in the fiber loading. However, higher values of tensile strength and flexural strength of particulate filled glass polyester were found than that of the unfilled glass polyester composite. In the case of thermo-mechanical and thermal properties, the particulate filled composites show better dynamical and thermal properties when compared to the unfilled glass polyester composites. The mechanical and thermal properties (i.e. thermal conductivity) are also calculated using FE modeling (ANSYS software) and the results from this simulation shows good agreement with the experimental results.  相似文献   

5.
In this study, glass fibers were modified using γ‐glycidoxypropyltrimethoxysilane of different concentrations to improve the interfacial adhesion at interfaces between fibers and matrix. Effects of γ‐glycidoxypropyltrimethoxysilane on mechanical properties and fracture behavior of glass fiber/epoxy composites were investigated experimentally. Mechanical properties of the composites have been investigated by tensile tests, short beam tests, and flexural tests. The short‐beam method was used to measure the interlaminar shear strength (ILSS) of laminates. The tensile and flexural properties of composites were characterized by tensile and three‐point bending tests, respectively. The fracture surfaces of the composites were observed with a scanning electron microscope. On comparing the results obtained for the different concentrations of silane solution, it was found that the 0.5% GPS silane treatment provided the best mechanical properties. The ILSS value of heat‐cleaned glass fiber reinforced composite is enhanced by ∼59% as a result of the glass fiber treatment with 0.5% γ‐GPS. Also, an improvement of about 37% in tensile strength, about 78% in flexural strength of the composite with the 0.5% γ‐GPS treatment of glass fibers was observed. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

6.
Fiber reinforced polymer composites has been used in a variety of application because of their many advantages such as relatively low cost of production, easy to fabricate, and superior strength compare to neat polymer resins. Reinforcement in polymer is either synthetic or natural. Synthetic fiber such as glass, carbon, etc. has high specific strength but their fields of application are limited due to higher cost of production. Recently there is an increase interest in natural composites which are made by reinforcement of natural fiber. In this connection, an investigation has been carried out to make better utilization of coconut coir fiber for making value added products. The objective of the present research work is to study the physical, mechanical, and water absorption behavior of coir/glass fiber reinforced epoxy based hybrid composites. The effect of fiber loading and length on mechanical properties like tensile strength, flexural strength, and hardness of composites is studied. The experimental results reveal that the maximum strength properties is observed for the composite with 10 wt% fiber loading at 15 mm length. The maximum flexural strength of 63 MPa is observed for composites with 10 wt% fiber loading at 15 mm fiber length. Similarly, the maximum hardness value of 21.3 Hv is obtained for composites with 10 wt% fiber loading at 20 mm fiber length. Also, the surface morphology of fractured surfaces after tensile testing is examined using scanning electron microscope (SEM). POLYM. COMPOS., 35:925–930, 2014. © 2013 Society of Plastics Engineers  相似文献   

7.
通过物理共混改性制备了不同玻璃纤维含量的聚对苯二甲酰戊二胺/聚己二酰戊二胺(PA5T/56)复合材料,研究了不同玻璃纤维含量对复合材料力学性能、热性能、吸水率和结晶行为的影响.结果 表明,随着玻璃纤维含量的增加,复合材料的力学性能、热稳定性得到大幅度提升,而吸水率逐渐降低.当玻璃纤维含量的质量分数达到40%时,PA5T...  相似文献   

8.
Triglyceride oils derived from plants have been used to synthesize several different monomers for use in structural applications. These monomers have been found to form polymers with a wide range of physical properties. They exhibit tensile moduli in the 1–2 GPa range and glass transition temperatures in the range 70–120 °C, depending on the particular monomer and the resin composition. Composite materials were manufactured utilizing these resins and produced a variety of durable and strong materials. At low glass fiber content (35 wt %), composites produced from acrylated epoxidized soybean oil by resin transfer molding displayed a tensile modulus of 5.2 GPa, a flexural modulus of 9 GPa, a tensile strength of 129 MPa, and flexural strength of 206 MPa. At higher fiber contents (50 wt %) composites produced from acrylated epoxidized soybean oil displayed tensile and compression moduli of 24.8 GPa each, and tensile and compressive strengths of 463.2 and 302.6 MPa, respectively. In addition to glass fibers, natural fibers such as flax and hemp were used. Hemp composites of 20% fiber content displayed a tensile strength of 35 MPa and a tensile modulus of 4.4 GPa. The flexural modulus was ∼2.6 GPa and the flexural strength was in the range 35.7–51.3 MPa, depending on the test conditions. The flax composite materials had tensile and flexural strengths in the ranges 20–30 and 45–65 MPa, respectively. The properties exhibited by both the natural- and synthetic fiber-reinforced composites can be combined through the production of “hybrid” composites. These materials combine the low cost of natural fibers with the high performance of synthetic fibers. Their properties lie between those displayed by the all-glass and all-natural composites. Characterization of the polymer properties also presents opportunities for improvement through genetic engineering technology. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 703–723, 2001  相似文献   

9.
A novel process has been developed to manufacture poly(methyl methacrylate) (PMMA) pultruded parts. The mechanical and dynamic mechanical properties, environmental effects, postformability of pultruded composites and properties of various fiber (glass, carbon and Kevlar 49 aramid fiber) reinforced PMMA composites have been studied. Results show that the mechanical and thermal properties (i.e. tensile strength, flexural strength and modulus, impact strength and HDT) increase with fiber content. Kevlar fiber/PMMA composites possess the highest impact strength and HDT, while carbon fiber/PMMA composites show the highest tensile strength, tensile and flexural modulus, and glass fiber/PMMA composites show the highest flexural strength. Experimental tensile strengths of all composites except carbon fiber/PMMA composites follow the rule of mixtures. The deviation of carbon fiber/PMMA composite is due to the fiber breakage during processing. Pultruded glass fiber reinforced PMMA composites exhibit good weather resistance. They can be postformed by thermoforming, and mechanical properties can be improved by postforming. The dynamic shear storage modulus (G′) of pultruded glass fiber reinforced PMMA composites increased with decreasing pulling rate, and G′ was higher than that of pultruded Nylon 6 and polyester composites.  相似文献   

10.
Ritesh Kaundal 《SILICON》2018,10(6):2439-2452
The present work was carried out for the utilization of major quantities of flyash as filler material in the short fiber reinforced polyester resin composites in various engineering and structural applications. The incorporation of flyash modifies the hardness, tensile, flexural, impact and damping behavior of the composites. It is observed that hardness, flexural modulus and impact strength of flyash filled composites increases with increase in the flyash filler contents. Whereas, with the addition of flyash contents it is observed that there is decrease in tensile strength and flexural strength. But beyond the 10 wt.-% flyash filler addition in the composite the flexural strength increases. At the end, the erosion wear behavior of all the composites has been studied by Taguchi experimental design. It is found that unfilled glass polyester composite suffers greater erosion loss as compare to particulate filled glass polyester composites. The eroded surface morphology is examined by SEM and the related erosion wear mechanism is discussed in detail.  相似文献   

11.
Pineapple leaf fiber (PALF) which is rich in cellulose, relatively inexpensive, and abundantly available has the potential for polymer reinforcement. The present study investigated the tensile, flexural, and impact behavior of PALF-reinforced polyester composites as a function of fiber loading, fiber length, and fiber surface modification. The tensile strength and Young's modulus of the composites were found to increase with fiber content in accordance with the rule of mixtures. The elongation at break of the composites exhibits an increase by the introduction of fiber. The mechanical properties are optimum at a fiber length of 30 mm. The flexural stiffness and flexural strength of the composites with a 30% fiber weight fraction are 2.76 GPa and 80.2 MPa, respectively. The specific flexural stiffness of the composite is about 2.3 times greater than that of neat polyester resin. The work of fracture (impact strength) of the composite with 30% fiber content was found to be 24 kJ m−2. Significant improvement in the tensile strength was observed for composites with silane A172-treated fibers. Scanning electron microscopic studies were carried out to understand the fiber-matrix adhesion, fiber breakage, and failure topography. The PALF polyester composites possess superior mechanical properties compared to other cellulose-based natural fiber composites. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 64: 1739–1748, 1997  相似文献   

12.
The use of products and byproducts from the agro‐industry and forest biorefinery is essential for the development of value‐added and low environmental‐impact materials. In this study, polyurethanes were prepared using sodium lignosulfonate (NaLS) and castor oil (CO) as reagents and were used to prepare composites reinforced with lignocellulosic fibers, namely, curaua and coir fibers (30 wt %, 3 cm length, and randomly oriented). The SEM images of fractured surfaces of the composites revealed excellent adhesion at the fiber/matrix interface of both coir and curaua composites, which probably resulted from the favorable interactions between polar groups, as well as amid low polarity domains that are present in both the matrix and the reinforcements. The composites exhibited different impact/flexural and strength/flexural moduli (NaLS/CO/Curaua = 465 Jm?1/44 MPa/2 GPa; NaLS/CO/Coir = 180 Jm?1/25 MPa/1 GPa). The higher tensile strength/aspect ratio of the curaua fibers (485 MPa/259) compared with that of the coir fibers (120 MPa/130) most likely contributes to the enhanced performance of its composite. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

13.
《Polymer Composites》2017,38(7):1259-1265
Chemical treatment of reinforcement material is one of the main ways of improving the mechanical properties of natural fiber reinforced polymer composites. In the present study, coir fiber was used as reinforcement material, while polypropylene (PP) and polyethylene (PE) polymer were used as matrix material. Before reinforcing with polymer, raw coir fiber was chemically treated with basic chromium sulfate and sodium bicarbonate in a sieve shaker. Hot‐pressed method was used for composite manufacturing during which the fiber loading was varied at 0, 5, 10, 15, and 20 wt%. Comparison of the properties of raw and chemically treated coir fiber reinforced PP and PE was conducted. Mechanical characteristics of the composites were evaluated using tensile, flexural, impact, and hardness tests. Water absorption test was conducted to know water uptake characteristics. Microstructural analysis using a scanning electron microscope was performed to observe the adhesiveness between the matrix and the fiber. Thermogravimetric analysis was done to observe the physical and chemical changes in fiber and composites. The results showed that chemical treatment improved the physical, mechanical, and thermal properties of the manufactured composites. PP composites had better properties as compared to PE composites, while higher fiber loading resulted in better mechanical properties of the resultant composites. POLYM. COMPOS., 38:1259–1265, 2017. © 2015 Society of Plastics Engineers  相似文献   

14.
This paper presents a novel process developed to manufacture poly(methyl methacrylate) (PMMA) pultruded composite. The mechanical, thermal, and dynamic mechanical properties, environmental effect, postformability of various fiber (glass, carbon, and Kevlar 49 aramid fiber) reinforced pultruded PMMA composites have been studied. Results show mechanical properties (i.e., tensile strength, specific tensile strength, tensile modulus, and specific flexural strength) and thermal properties (HDT) increase with fiber content. Kevlar fiber/PMMA composites possess the highest specific tensile strength and HDT, carbon fiber/PMMA composites show the highest tensile strength and tensile modulus, and glass fiber/PMMA composites show the highest specific flexural strength. Pultruded glass-fiber-reinforced PMMA composites exhibit good weather resistance. These composite materials can be postformed by thermoforming under pressure, and mechanical properties of postformed products can be improved. The dynamic shear storage and loss modulus (G′, G″) of pultruded glass-fiber-reinforced PMMA composites increased with decreasing pulling rate, and their shear storage moduli are higher than those of pultruded Nylon 6 and polyester composites.  相似文献   

15.
This work is aimed at determining the possibility of using crab carapace materials as reinforcing fillers in the coir fiber reinforced polyester composite. The sample preparation was carried out with three levels of fiber length (10, 30, & 50 mm), fiber weight content (10, 25, and 40%), and additive weight content (2, 4, and 6%). The composite sheets were prepared by impregnating crab carapace additive obtained from crab shell with coir fiber reinforced polyester composite using compression molding machine. The tensile, flexural, and impact strength of the composites were determined as per ASTM standards and regression models were developed to predict the mechanical behaviors of the composites using statistical technique. The fabrication parameters considered in this investigation has significantly contributed toward the mechanical properties of the composites. The developed regression models were optimized to obtain the maximum values of mechanical properties using single objective genetic algorithm and multiobjective lexicographic method in this investigation. POLYM. COMPOS., 37:844–853, 2016. © 2014 Society of Plastics Engineers  相似文献   

16.
In this study, the effects of fiber surface modification and hybrid fiber composition on the properties of the composites is presented. Jute fibers are cellulose rich (>65%) modified by alkali treatment, while the lignin rich (>40%) coconut coir fibers consist in creating quinones by oxidation with sodium chlorite in the lignin portions of fiber and react them with furfuryl alcohol (FA) to create a coating around the fiber more compatible with the epoxy resins used to prepare polymer composites. The maximum improvement on the properties was achieved for the hybrid composite containing the jute–coir content of 50 : 50. The tensile and flexural strength are recorded as 25 and 63 MPa at modified coir fiber content of 50 vol %, respectively, which are 78% and 61% higher than those obtained for unmodified fiber reinforced composites, i.e., tensile and flexural strength are 14 and 39 MPa, respectively. The reinforcement of the modified fiber was significantly enhanced the thermal stability of the composites. SEM features correlated satisfactorily with the mechanical properties of modified fiber reinforced hybrid composites. SEM analysis and water absorption measurements have confirmed the FA-grafting and shown a better compatibility at the interface between chemically modified fiber bundles and epoxy novolac resin. Hailwood–Horrobin model was used to predict the moisture sorption behavior of the hybrid composite systems. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

17.
研究了缝合及加强筋增强方式下泡沫夹芯复合材料的三点弯曲性能.采用万能试验机分别进行了缝合与未缝合碳纤维、玻璃纤维、玻碳混杂纤维泡沫夹芯复合材料的三点弯曲实验,分别得出各自的载荷-挠度曲线,再引入加强筋的方式进一步研究缝合碳纤维泡沫夹芯复合材料的弯曲性能.结果表明,玻碳混杂纤维泡沫夹芯复合材料较玻璃纤维泡沫夹心复合材料性...  相似文献   

18.
The mechanical and fracture properties of injection molded short glass fiber)/short carbon fiber reinforced polyamide 6 (PA 6) hybrid composites were studied. The short fiber composites of PA 6 glass fiber, carbon fiber, and the hybrid blend were injection molded using a conventional machine whereas the two types of sandwich skin–core hybrids were coinjection molded. The fiber volume fraction for all formulations was fixed at 0.07. The overall composite density, volume, and weight fraction for each formulation was calculated after composite pyrolysis in a furnace at 600°C under nitrogen atmosphere. The tensile, flexural, and single‐edge notch‐bending tests were performed on all formulations. Microstructural characterizations involved the determination of thermal properties, skin–core thickness, and fiber length distributions. The carbon fiber/PA 6 (CF/PA 6) formulation exhibits the highest values for most tests. The sandwich skin‐core hybrid composites exhibit values lower than the CF/PA 6 and hybrid composite blends for the mechanical and fracture tests. The behaviors of all composite formulations are explained in terms of mechanical and fracture properties and its proportion to the composite strength, fiber orientation, interfacial bonding between fibers and matrix, nucleating ability of carbon fibers, and the effects of the skin and core structures. Failure mechanisms of both the matrix and the composites, assessed by fractographic studies in a scanning electron microscope, are discussed. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 957–967, 2005  相似文献   

19.
通过在短玻(GF)增强聚丙烯(PP)中添加聚烯烃弹性体(POE),并用马来酸酐对PP进行接枝交联的方法, 制备了高冲击韧性GF/PP复合材料。在该材料中,短切玻璃纤维的加入大幅度提高了材料的拉伸、弯曲强度,而POE 则通过产生形变等方式,提高了材料的冲击韧性;在其中加入马来酸酐接枝聚丙烯增加界面结合力,可使GF/PP/POE 复合体系表现出良好的综合力学性能,其拉伸强度为51.9 MPa,弯曲强度为68.1MPa,冲击韧性为44.2 kJ/m2。  相似文献   

20.
长玻璃纤维增强尼龙6的力学性能研究   总被引:9,自引:0,他引:9  
采用一种新的熔融浸渍工艺制备了长玻纤增强尼龙6复合材料,研究了玻纤含量、玻纤长度分布对复合材料力学性能的影响。结果表明,在玻纤质量分数为50%时复合材料的拉伸强度为234MPa,弯曲强度为349MPa,弯曲弹性模量为11.4GPa,缺口冲击强度为313J/m,综合力学性能明显优于短玻纤增强尼龙6复合材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号