首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Pressure–volume relations and optical Raman and Infrared spectra of polycrystalline 1MNT have been obtained under quasi‐hydrostatic conditions up to 16 and 40 GPa, respectively, by using diamond anvil cell, synchrotron‐based angle‐resolved X‐ray diffraction, and microspectroscopy. The X‐ray measurements show that the pressure–volume relations remain smooth up to 16 GPa at room temperature, while vibrational measurements show no evidence of a phase transition to near 40 GPa. Anomalous increases of several vibrational intensities and bandwidths suggest that subtle molecular distortions and structural modifications occur in the crystal as pressure increases. Decompression experiments indicate the structural modifications are reversible.  相似文献   

3.
A thermodynamic approach for modeling the phase equilibrium of multicomponent fluid mixtures under the influence of an applied shear rate (shear stress) is presented. This approach is based on assuming that, for the modeled mixtures, the viscosity variation with shear rate can be well‐described by using a power law. This framework is then used for predicting the influence of shear rate on the critical temperature, critical pressure, and spinodal curve of several Newtonian multicomponent hydrocarbon mixtures; giving as a result that for these kind of mixtures and depending on the composition, the critical temperature exhibits both an upward and downward shift with shear rate, whereas the critical pressure always exhibits a downward trend. Both a suppression of the liquid–liquid transition and shrinkage of the spinodal curves (mixing effect) are also predicted. © 2013 American Institute of Chemical Engineers AIChE J, 59: 4383–4389, 2013  相似文献   

4.
Cellulose acetate membranes (CA) were modified by means of plasma polymerization of ethylene diamine (EDA) and n‐butylamine (n‐BA). The motivation for this work was the application of a modified membrane for the single‐layer enzyme electrode. A tubular reactor with the external radiofrequency (13.56 MHz) excitation was used. Surface modification was performed at 5, 10, and 15 W power (at 27 Pa working pressure) for 5, 10, 15 min. Modified surfaces were characterized in detail by FTIR–ATR, XPS (ESCA), contact angle, and enzyme immobilization activity. The best treatment results were obtained for EDA with 5 W and 30 min and 15 W and 10 min. These results are discussed using surface analysis data. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1341–1352, 2001  相似文献   

5.
6.
Constitutive equations are derived for the viscoelastic response of amorphous glassy polymers in the region of subyield deformations. The model treats an amorphous polymer as a composite material consisting of an ensemble of flow units, immobile holes, and clusters of interstitial free volume moving through a network of long chains to and from voids. Changes in macropressure lead to an increase in the equilibrium concentration of interstitial free volume that, in turn, induces diffusion of free‐volume elements from holes. The mass flow results in dissolution of voids that is observed as time‐dependent densification of a glassy polymer. It is demonstrated that the model correctly predicts stress relaxation and a decrease in the specific volume observed in uniaxial tensile and compressive tests on polycarbonate at room temperature. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1705–1718, 1999  相似文献   

7.
We present a predictive model for the heats of sublimation of the condensed phases of energetic materials that combine the empirical relations of Politzer with first‐principles density‐functional calculations of the electronic properties of the molecular surfaces. The distinct features of our methodology are the use of numerical pseudo‐atomic orbitals for the quantum mechanical calculation of the electronic charge density, as well as an improved technique for the molecular surface area determination. As applications, we used our model to predict heats of sublimation of energetic molecules CL‐20, HMX, RDX, TNT, FOX‐7, TATB, and LLM‐105, with the Politzer parameters fit based on a set of eight nitro‐aromatic molecules. In comparison with conventional quantum chemistry calculations, our approach is tremendously less computationally demanding, yet it still demonstrates competitive accuracy and predictive power.  相似文献   

8.
Members of the Eph receptor tyrosine kinase family play essential roles in the pathogenesis of cancer and are therefore promising candidates for molecular imaging by positron emission tomography (PET), for example. In this regard, radiochemical access to novel PET radiotracers derived from potent inhibitors that target the EphB4 kinase domain and which bear a benzodioxolylpyrimidine structural motif was developed. A synthetic route was established for a new fluorine‐18‐containing radiotracer and for the desired precursor based on a high‐affinity benzodioxolylpyrimidine receptor tyrosine kinase inhibitor lead structure. The radiotracer [18F] 15 was obtained in 16 % radiochemical yield with a specific activity of ~7 GBq μmol?1 and >95 % radiochemical purity. Due to the implication of EphB4, particularly in the progression, angiogenesis, and metastasis of melanoma, EphB4‐overexpressing human melanoma cells were generated and used as a novel in vitro model for radiopharmacological evaluation of the radiotracer. We demonstrate that the corresponding non‐radioactive reference compound regained its functionality as an inhibitor for both EphB4 receptor tyrosine kinase and Src kinase. EphB4 was significantly inhibited at compound concentrations >1 μM . Cellular uptake studies with [18F] 15 revealed substantial uptake in both EphB4‐overexpressing and control cells. Moreover, NMRI nu/nu mice bearing both EphB4‐overexpressing tumors and control tumors were used for radiopharmacological characterization by biodistribution studies ex vivo and by dynamic small‐animal PET experiments in vivo. Despite the high metabolic stability of the novel radiotracer observed in vivo, no substantial binding or accumulation in EphB4‐overexpressing and control tumors was observed. Nevertheless, we point out that the approach presented herein gives convenient access to novel 18F‐labeled benzodioxolylpyrimidines and is a promising strategy for the further development of novel radiotracers for imaging Eph receptor tyrosine kinases in cancer.  相似文献   

9.
The effect of solvents on radiation‐induced grafting of styrene onto commercial fluorinated polymer films such as poly(tetrafluoroethylene) (PTFE), poly(tetrafluoroethylene‐co‐hexafluoropropylene) (FEP) and poly(tetrafluoroethylene‐co‐perfluorovinyl ether) (PFA) was investigated by a simultaneous irradiation technique. Three solvents, ie methanol, benzene and dichloromethane, were used to dilute styrene under various irradiation doses, dose rates and monomer concentrations. The effect of addition of mineral and organic acids on the degree of grafting in the presence of the three solvents was also studied. The degree of grafting was found to be strongly dependent upon the type of solvent and composition of the monomer/solvent mixture. Dilution of styrene with dichloromethane in various grafting conditions was found to enhance dramatically the degree of grafting compared with other solvents, and the maximum degree of grafting was achieved at a monomer/solvent mixture having a composition of 60:40 (v/v). The formation of polystyrene grafts in the three fluorinated films was verified using FTIR spectrometry. © 2001 Society of Chemical Industry  相似文献   

10.
Chelating polymer granules containing amidoxime chelating groups were synthesized by radiation‐induced homopolymerization of acrylonitrile monomer. The chemical reactive intermediate polyacrylonitrile was treated with hydroxylamine solution to convert the chemical active cyano groups into the amidoxime groups. Kinetic study of the effects of monomer concentration, radiation dose, dose rate, and temperature on the polymerization process was investigated. It was found that at low monomer concentration, the rate of polymerization is roughly independent on the initial monomer concentration, while at high monomer concentration, 35–65%, a marked acceleration on the rate was observed. The order of the dependence of the initial rate of polymerization on the dose rate is 0.77, which deviates from the classical square‐root law due to the precipitation of the formed polymer. The conversion percent and molecular weight of the produced polymer are inversely proportional to dose rate at constant radiation dose. The activation energy was found to be 2.7 kcal/mol, and the rate constant of initiation is independent of temperature. The effect of type of solvent on the polymerization was studied. DMF solvent of the closest solubility parameter to the solubility parameter of polyacrylonitrile is the best solvent for the polymerization process. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 1405–1412, 2000  相似文献   

11.
PFA‐g‐polystyrene sulfonic acid membranes were prepared by simultaneous radiation‐induced graft copolymerization of styrene onto poly(tetrafluoroethylene‐co‐perfluorovinyl ether) (PFA) film followed by sulfonation. The membrane physico‐chemical properties such as swelling behavior, ion exchange capacity, hydration number, and ionic conductivity were studied as a function of the degree of grafting. Thermal as well as chemical stability of the membranes was also investigated. The membrane properties were found to be mainly dependent upon the degree of grafting. The water uptake, ion exchange capacity, hydration number, and ionic conductivity of the membranes were increased, whereas the chemical stability decreased as the degree of grafting increased. The membranes showed reasonable physico‐chemical properties compared to Nafion 117 membranes. However, their chemical stability has to be further improved to make them acceptable for practical use in electrochemical applications. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1–11, 2000  相似文献   

12.
Cation‐exchange hollow fiber membrane was prepared by radiation‐induced grafting polymerization of styrene onto polyethylene hollow fiber membrane and its sulfonation. Adsorption characteristics for the cation‐exchange membranes are examined when the solution of Co2+ permeates across the cation‐exchange fiber membrane. The maximum grafting peak was obtained from 70% styrene concentration at 50°C. The degree of grafting (%) was enhanced with additives such as H2SO4 and divinylbenzene. The content of  SO3H groups ranged from 2 to 5 mmol g−1 with chlorosulfonic acid (ClSO3H) in dichloroethane, from 0.5 to 6 mmol g−1 with ClSO3H in H2SO4, respectively. The adsorption of Co2+ by the cation‐exchange membranes increased with increasing  SO3H content. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 2227–2235, 1999  相似文献   

13.
14.
64Cu is a cyclotron‐produced radionuclide which offers, thanks to its characteristic decay scheme, the possibility of combining positron emission tomography (PET) investigations with radiotherapy. We evaluated the Alceo system from Comecer SpA to automatically produce 64Cu for radiolabelling purposes. We established a 64Cu production routine with high yields and radionuclide purity in combination with excellent operator radiation protection. The carbonic anhydrase XII targeting 6A10 antibody Fab fragment was successfully radiolabelled with the produced 64Cu, and proof‐of‐principle small‐animal PET experiments on mice bearing glioma xenografts were performed. We obtained a high tumor‐to‐contralateral muscle ratio, which encourages further in vivo investigations of the radioconjugate regarding a possible application in diagnostic tumor imaging.  相似文献   

15.
Crystalline poly(ethylene‐co‐vinyl alcohol) (EVOH) membranes were prepared by a thermally induced phase separation (TIPS) process. The diluents used were 1,3‐propanediol and 1,3‐butanediol. The dynamic crystallization temperature was determined by DSC measurement. No structure was detected by an optical microscope in the temperature region higher than the crystallization temperature. This means that porous membrane structures were formed by solid–liquid phase separation (polymer crystallization) rather than by liquid–liquid phase separation. The EVOH/butanediol system showed a higher dynamic crystallization temperature and equilibrium melting temperature than those of the EVOH/propanediol system. SEM observation showed that the sizes of the crystalline particles in the membranes depended on the polymer concentration, cooling rate, and kinds of diluents. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 79: 2449–2455, 2001  相似文献   

16.
In situ studies of the aggregation behavior of traditional surfactants at the liquid interface using spectroscopic methods are often significantly affected by the large volume of fluorescent groups, such as pyrene. Fluorescent‐Gemini surfactants provide an ideal solution since the fluorescent block can be designed as a spacer or a tail. In this work, we report the synthesis of a new fluorescent‐Gemini surfactant with a rigid spacer (referred to as 8‐TBT‐8). The aggregation behavior and application in cell‐membrane imaging were investigated. The unique aggregation behavior in an organic solvent and aqueous solution was studied using spectroscopy. UV–vis and photoluminescence spectra of 8‐TBT‐8 revealed that this new fluorescent surfactant forms H aggregates in organic solution to give blue emission, whereas it forms J aggregates in aqueous solution to give green fluorescence under UV light. In addition, the fluorescence intensity of 8‐TBT‐8 increases abruptly at concentrations higher than the critical micellization concentration. Good photostability and a unique structure make the synthesized Gemini surfactant very suitable for membrane imaging.  相似文献   

17.
The visible‐light photohomopolymerization reactivities of several monofunctional oxiranes were evaluated using photodifferential scanning calorimetry (PDSC). Two oxiranes, styrene oxide and 1‐methoxy‐2‐methyl propylene oxide, were selected for copolymerization reactivity studies with five substituted 1,5,7,11‐ tetraoxaspiro[5.5]undecanes (TOSUs). Reaction mixtures contained a diaryliodonium salt photoacid initiator and a β‐diketone photosensitizer. Experimentally determined reaction enthalpies were compared with calculated theoretical values to assess percent conversion. Relative reactivities were evaluated by comparing induction and exotherm peak maximum times. Results of AM1 semiempirical quantum mechanical calculations of reaction energetics were compared to experimental findings for selected polymerizations. IR spectral changes were consistent with oxirane and TOSU ring opening. The effect of temperature on the photopolymerization reactivity characteristics of glycidyl methylphenyl ether alone and in combination with unsubstituted TOSU was also studied. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 159–168, 2002  相似文献   

18.
Low‐temperature helium plasma treatment followed by grafting of N‐vinyl‐2‐pyrrolidone (NVP) onto poly(ether sulfone) (PES) ultrafiltration (UF) membranes was used to modify commercial PES membranes. Helium plasma treatment alone and post‐NVP grafting substantially increased the surface hydrophilicity compared with the unmodified virgin PES membranes. The degree of modification was adjusted by plasma treatment time and polymerization conditions (temperature, NVP concentration, and graft density). The NVP‐grafted PES surfaces were characterized by Fourier transform infrared attenuated total reflection spectroscopy and electron spectroscopy for chemical analysis. Plasma treatment roughened the membrane as measured by atomic‐force microscopy. Also, using a filtration protocol to simulate protein fouling and cleaning potential, the surface modified membranes were notably less susceptible to BSA fouling than the virgin PES membrane or a commercial low‐protein binding PES membrane. In addition, the modified membranes were easier to clean and required little caustic to recover permeation flux. The absolute and relative permeation flux values were quite similar for the plasma‐treated and NVP‐grafted membranes and notably higher than the virgin membrane. The main difference being the expected long‐term instability of the plasma treated as compared with the NVP‐grafted membranes. These results provide a foundation for using low‐temperature plasma‐induced grafting on PES with a variety of other molecules, including other hydrophilic monomers besides NVP, charged or hydrophobic molecules, binding domains, and biologically active molecules such as enzymes and ribozymes. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 1699–1711, 1999  相似文献   

19.
Turbulent mixing in the confined swirling flow of a multi‐inlet vortex reactor (MIVR) was investigated using planar laser induced fluorescence (PLIF). The investigated Reynolds numbers based on the bulk inlet velocity ranged from 3290 to 8225, and the Schmidt number of the passive scalar was 1250. Measurements were taken in the MIVR at three different heights (¼, ½, and ¾ planes). The mixing characteristics and performance of the MIVR were investigated using instantaneous PLIF fields and pointwise statistics such as mixture fraction mean, variance, and one‐point concentration probability density function. It was found that the scalar is stretched along velocity streamlines, forming a spiral mixing pattern in the free‐vortex region. In the forced‐vortex region, mixing intensifies as the turbulent fluctuations increase significantly there. The mixing mechanisms in the MIVR were revealed by identifying specific segregation zones. At Re = 8225 the mixing in the free‐vortex region was dominated by both large‐scale structures and turbulent diffusion, while in the forced‐vortex region mixing is dominated by turbulent diffusion. © 2016 American Institute of Chemical Engineers AIChE J, 63: 2409–2419, 2017  相似文献   

20.
Morphological investigations of poly(tetrafluoroethylene‐co‐perfluorovinyl ether) (PFA)‐g‐polystyrene sulfonic acid membranes prepared by radiation‐induced graft copolymerization of styrene onto PFA films followed by sulfonation were performed by X‐ray photoelectron spectroscopy. The analyzed materials included grafted film and sulfonated membrane samples having various degrees of grafting. Original PFA film was used as a reference material. The results of the X‐ray photoelectron spectral analysis show that PFA film undergoes changes in terms of chemical compositions and binding energies of its basic elemental components under the influence of membrane preparation procedure, i.e., grafting and sulfonation. The chemical compositions of the surfaces of the membranes were found to be dependent on the degree of grafting unlike the binding energies of their elemental components (C, F, O, and S), which were found to be independent of the degree of grafting. The atomic ratio of F/C was found to decrease drastically with the increase in the degree of grafting and the membranes were found to have almost pure hydrocarbon structure at the layers close to their surfaces where degradation is suggested to be concentrated. The results of these investigations suggest that the morphology of the membranes plays an important role in the chemical degradation of the membranes. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2455–2463, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号