首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Desmophen® binder‐based rocket propellant formulations containing ammonium dinitramide (ADN) and different fuel filler types (Al, HMX) were manufactured and investigated. Desmophen® D2220 is a polyesterpolyol. Polyesters are seen as a binder possibility, because of the relatively low temperature of the glass transition region compared to polyether‐based prepolymers such as GAP. The analogous formulations with AP instead of ADN were also included for comparison. The aging was followed by SEM, DSC, and DMA measurements. The accelerated aging program was developed on the principle of thermal equivalent load and the generalized van’t Hoff rule with a scaling factor equal to F=2.9. The aging was performed in air (RH<10 %) at temperature values between 65 and 85 °C and aging times adjusted to a thermal equivalent load of 15 years at 25 °C. DMA measurements of the aged ADN/Desmophen®‐based propellants identified changes in the loss factor curve. In contrast to HTPB‐Al‐AP rocket propellant formulations, the loss factor curve of the ADN formulations with Desmophen®‐based elastomer binder shows only one main apparent peak. The loss factor curves were modeled with exponentially modified Gaussian functions, which have revealed the presence of a second hidden peak. It was found that the aging could be characterized by the time‐temperature dependence of the areas of the hidden peak. The area increased with aging, which is explained by scissioning of the polymer in the shell around the ADN particles. By this process the strength is reduced, which was recognized by the decrease in storage shear modulus.  相似文献   

2.
Three HTPB‐based rocket propellant formulations containing ammonium perchlorate and aluminum particles, with different aluminum content and particle size, have been manufactured. The study has focused on the change of mechanical properties with aging time by using dynamic mechanical analysis (DMA). Therefore, propellant formulations underwent an accelerated aging program, in air (RH<10 %), between 60 °C and 90 °C with aging time adjusted to a thermal equivalent load of 15 to 20 years at 25 °C. DMA investigations revealed distinct changes in the shape of the loss factor curve. These curves were modeled with three exponentially modified Gaussian (EMG) functions in order to get the molecular interpretation of the involved aging phenomena by separating the binder fractions with different mobility. Aging of propellant formulations can be followed by considering only two parameters: the areas of the second and third loss factor transition peaks (A2, A3), and the corresponding maximum temperature values of the assigned Gauss peaks (Tc2, Tc3).  相似文献   

3.
Several ADN‐based rocket propellant formulations containing different pre‐polymers (GAP diol/triol, Desmophen® 2200), curing agents (BPS, Desmodur® N100, Desmodur® N3400), plasticizers (BDNPA‐F, TMETN), and filler types (Al, HMX) have been manufactured. Propellant formulations were characterized by tensile tests, SEM analyses and DMA measurements. The study has focused on characterizations of the propellants in terms of evaluation of the strength and strain capability, investigation of the presence/absence of dewetting phenomena, compatibility issues and evaluation of the glass transition temperature. Ammonium perchlorate‐based propellant formulations have also been manufactured and analyzed in order to make comparisons. Aging was investigated using mass loss measurements.  相似文献   

4.
Shelf life predictions for solid rocket propellant formulations depend upon the existence of a reliable and efficient accelerated aging method. Results presented in this paper demonstrate the failure of simple models like Arrhenius to predict the aging behavior of some composite propellants. This work proposes a new approach for accelerated aging studies of the degradation of the polymeric binder in such propellant formulations. Using a reaction severity index, simple kinetic models have been demonstrated to adequately model the degradation behavior of various propellants submitted to isothermal aging. Furthermore, the versatility of the method allows shelf life predictions for samples experiencing temperature cycles during aging.  相似文献   

5.
The synthesis and application of hydrogenated hydroxy-terminated polyisoprene (HHTPI) to a fuel binder of composite solid propellants were attempted. An HHTPI prepolymer was synthesized through the hydrogenation for the hydroxy-terminated polyisoprene (HTPI) in the presence of nickel and zirconium catalysts over kieselguhr in 2.0 MPa hydrogen and at 443 K – 453 K for 24h. A prepolymer of a number-averaged molecular weight 2500–3800, provided a viscosity level required for the use of a fuel binder from which solid propellant can be possibly made by means of direct casting method. Thermal stability and aging characteristics of HHTPI elastomer against environmental attacks are superior to those of HTPB. Some plasticizers and bonding agents can bring about the acceptable mechanical properties to the propellant grains mainly composed of HHTPI, ammonium perchlorate and aluminium powder. The linear burning rates of HHTPI-based propellants are at the same level with that of HTPB-based propellants. However, the composition that gives the maximum performance with HHTPI-based propellants, shifts to 1–2 wt% fuel-rich side from the most adequate fuel content 12 wt% in HTPB/AP/Al. The HHPTI propellants indicated the similar burning rate as HTPB-based propellants in the linear burning rates in spite of the comparatively poor ignitability. Nevertheless, the static tests of 100 mm dia. sounding rocket motors are successfully performed by an ignition operation at the pressurized condition. The ballistic performances are not inferior to those of the HTPB-based propellants.  相似文献   

6.
Ammonium dinitramide (ADN) is a high performance solid oxidizer of interest for use in high impulse and smokeless composite rocket propellant formulations. While rocket propellants based on ADN may be both efficient, clean burning, and environmentally benign, ADN suffers from several notable disadvantages such as pronounced hygroscopicity, significant impact and friction sensitivity, moderate thermal instability, and numerous compatibility issues. Prilled ADN is now a commercially available and convenient product that addresses some of these disadvantages by lowering the specific surface area and thereby improving handling, processing, and stability. In this work, we report the preparation, friction and impact sensitivity and mechanical properties of several smokeless propellant formulations based on prilled ADN and isocyanate cured and plasticized glycidyl azide polymer (GAP) or polycaprolactone‐polyether. We found such propellants to have very poor mechanical properties in unmodified form and to display somewhat unreliable curing. However, by incorporation of octogen (HMX) and a neutral polymeric bonding agent (NPBA), the mechanical properties of such smokeless formulations were significantly improved. Impact and friction sensitivities of these propellants compare satisfactorily with conventional propellants based on ammonium perchlorate (AP) and inert binder systems.  相似文献   

7.
Rocket propellants with reduced smoke and high burning rates recommend themselves for use in a rocket motor for high accelerating tactical missiles. They serve for an improved camouflage on the battle field and may enable guidance control due to the higher transmission of their rocket plume compared to traditional aluminized composite propellants. In this contribution the material based ranges of performance and properties of three non aluminized rocket propellants will be introduced and compared to each other. The selected formulations based on AP/HTPB; AP/PU/TMETN and AP/HMX/GAP/TMETN have roughly the same specific impulse of ISP = 2430 Ns/kg at 70:1 expansion ratio. The burning rates in the pressure range from 10–18 MPa vary from to 26–33 mm/s for the AP/HTPB propellant, 52–68 mm/s for the formulation based on AP/PU/TMETN and 28–39 mm/s for the propellant based on AP/HMX/GAP. With 58% and 20% AP-contents the propellants with nitrate ester plasticizers create a much smaller secondary signature than the AP/HTPB representative containing 86% AP. Their disadvantage, however, is the connection of high performance to a high level of energetic plasticizer. For this reason, the very fast burning propellant based on AP/PU/TMETN is endowed with a low elastic modulus and is limited to a grain configuration which isn't exposed too much to the fast and turbulent airstream. The mechanical properties of the AP/HMX/GAP-propellant are as good or better as those of the AP/HTPB propellant. The first one exhibits the same performance and burn rates as the composite representative but produces only one fifth of HCl exhaust. For this reason it is recommended for missile applications, which must have high accelerating power together with a significantly reduced plume signature and smoke production.  相似文献   

8.
A new triblock copolymer polyglycidylazide-block-polybutadiene-block-polyglycidylazide (GAP-PB-GAP) has been synthesized. The synthesis was done by cationic ring opening polymerization of epichlorohydrin (ECH) with HTPB as the alcohol and boron trifluoride etherate as the catalyst followed by the conversion of the -CH2Cl group into -CH2N3 group. The presence of the azido groups in the GAP polymer chain makes it more energetic and the triblock copolymer can be used as an energetic binder/additive for propellant energy modification. Since the triblock copolymer has polybutadiene (PB) as the central block, which is from HTPB itself, it can be used as an additive in HTPB based polymeric formulations to improve their properties. In the present work, a part of HTPB, the propellant binder in ammonium perchlorate (AP)/HTPB propellant was removed and replaced with the GAP-PB-GAP copolymer. Burn rate, mechanical properties, and heat of combustion properties of these propellants were measured and compared with the unmodified HTPB/AP propellant. The results show that the burn rate of the HTPB/AP solid propellant could be enhanced by the addition of the triblock copolymer.  相似文献   

9.
Azido polymers have been investigated as energetic binders in the area of solid rocket propellants. However, the low temperature mechanical properties of them are not comparable with the traditional propellant binders. In this work, a new kind of azido binder named poly (glycidyl azide‐r‐3‐azidotetrahydrofuran) (PGAAT) was successfully synthesized. The molecular structures of monomers and copolymers were characterized. The sensitivity and thermal properties of the azido binder were studied. The cationic copolymerization of 3‐methylsulfonyloxytetrahydrofuran with ternary cyclic ethers was confirmed. The PGAAT azido binder exhibited attractive features like low glass transition temperature (Tg, −60 °C) and high energy (1798 J/g). The results indicate that the polymer is a suitable candidate binder for the solid rocket propellants.  相似文献   

10.
Very few efficient bonding agents for use in solid rocket propellants with nitramine filler materials and energetic binder systems are currently available. In this work, we report the synthesis, detailed characterization, and use of neutral polymeric bonding agents (NPBA) in isocyanate‐cured and smokeless composite rocket propellants based on the nitramine octogen (HMX), the energetic binder glycidyl azide polymer (GAP), and the energetic plasticizer N‐butyl‐2‐nitratoethylnitramine (BuNENA). These polymeric bonding agents clearly influenced the viscosity of the uncured propellant mixtures and provided significantly enhanced mechanical properties to the cured propellants, even at low NPBA concentrations (down to 0.001 wt‐% of propellant). A modified NPBA more or less free of hydroxyl functionalities for interactions with isocyanate curing agent provided the same level of mechanical improvement as regular NPBA containing a substantial number of reactive hydroxyl groups. However, some degree of reactivity towards isocyanate is essential for function.  相似文献   

11.
Thermal decomposition of AMMO/AP composite propellants was studied by DTA, TGA and DSC in helium atmosphere. The effects of accelerated aging at 347 K for 370 days on decomposition kinetics were also measured. AMMO/AP propellant showed two different decomposition steps, which were mainly the AMMO binder decomposed region and the reaction of AP dominated region. These regions were separated at around 20 % weight loss point at the condition used in this study. AMMO binder decomposition and AP decomposition were strongly related each other. The heat generated by the AMMO binder decomposition initiated and accelerated the thermal decomposition of AP. Although both Fe2O3 and CFe activated the thermal decomposition of AMMO/AP propellants, CFe mainly accelerated the decomposition of AMMO binder and Fe2O3 catalyzed the AP reactions which consisted of the AP decomposition and the reaction between decomposed AP and decomposed AMMO binder. AMMO/AP composite propellants were thermally stable even after aging at 347 K for 370 days.  相似文献   

12.
This study focuses on the viscoelastic behavior of an industrial hydroxyl‐terminated polybutadiene (HTPB) based solid propellant. The analysis of the loss factor as function of temperature enables the investigation of the molecular mechanisms participating in the nonlinear viscoelastic behavior. A design of experiments determines the influences of the filler fraction, of the NCO/OH ratio, of the plasticizer content, and of the presence or absence of filler‐binder bonding agents. For all the tested materials, the loss factor as function of temperature exhibits two distinct peaks when measured by Dynamic Mechanical Analysis. Exponentially modified Gaussian distributions are applied on each peak to characterize the behavior. While the first peak is commonly associated with the rubber‐glass transition of the material, the second peak has not been clearly associated with a molecular mechanism. This study shows that the second peak of the loss factor in HTPB‐based solid propellants originates from the flow of free polymer chains in the polymer network with a reptation mechanism. The sol polymer fraction controls the area of the second peak, whereas its temperature at the maximum corresponds to an activation temperature determined by the molar masses of the sol polymer. Finally, when the propellant is stretched, a decrease in area and an increase in the temperature of the peak show that the reptation of the sol polymer chains is constrained by the network.  相似文献   

13.
In previous papers, the synthesis and characterization of OH‐terminated glycidyl azide‐r‐(3,3‐bis(azidomethyl)oxetane) copolymers (GA/BAMO) and poly‐3‐azidomethyl‐3‐methyl oxetane (pAMMO) by azidation of their respective polymeric substrates were described. The main objective was the preparation of amorphous azido‐polymers, as substitutes of hydroxy‐terminated polybutadiene (HTPB) in new formulations of energetic propellants. Here, the subsequent characterization of both the binders is presented. First of all, several isocyanates were checked in order to optimize the curing reaction, and then two small‐scale formulations of a propellant, based on aluminium and ammonium perchlorate, were prepared and characterized. Finally, the mechanical properties and burning rate were compared to those of a similar propellant based on HTPB as binder.  相似文献   

14.
Traditional composite rocket propellants are cured by treatment of hydroxyl‐terminated prepolymers with polyfunctional aliphatic isocyanates. For development of smokeless composite propellants containing nitramines and/or ammonium dinitramide (ADN), energetic binder systems using glycidyl azide polymer (GAP) are of particular interest. Polyfunctional alkynes are potential isocyanate‐free curing agents for GAP through thermal azide‐alkyne cycloaddition and subsequent formation of triazole crosslinkages. Propargyl succinate or closely related aliphatic derivatives have previously been reported for such isocyanate‐free curing of GAP. Herein, we present the synthesis and use of a new aromatic alkyne curing agent, the crystalline solid bisphenol A bis(propargyl ether) (BABE), as isocyanate‐free curing agent in smokeless propellants based on GAP, using either octogen (HMX) and/or prilled ADN as energetic filler materials. Thermal and mechanical properties, impact and friction sensitivity and ballistic characteristics were evaluated for these alkyne cured propellants. Improved mechanical properties could be obtained by combining isocyanate and alkyne curing agents (dual curing), a combination that imparted better mechanical properties in the cured propellants than either curing system did individually. The addition of a neutral polymeric bonding agent (NPBA) for improvement of binder‐filler interactions was also investigated using tensile testing and dynamic mechanical analysis (DMA). It was verified that the presence of isocyanates is essential for the NPBA to improve the mechanical properties of the propellants, further strengthening the attractiveness of dual cure systems.  相似文献   

15.
Currently formulated propellants comprise RDX and polymeric binders, such as hydroxy‐terminated polybutadiene (HTPB) and cellulose‐acetate butyrate (CAB) as well as the energetic substances glycidyl azide polymer (GAP) and nitrocellulose (NC). Propellants based on GAP are often brittle if they are formulated with a high content of cyclotrimethylene trinitramine (RDX) and due to the usually insufficient mechanical properties of GAP. On the other hand formulations based on RDX and NC may exceed the tolerable burning temperature with increasing RDX concentration. Therefore, in this study propellants with a high force and with relatively low burning temperature has been formulated by using a compound of NC and GAP as energetic binder. According to thermodynamic calculations GAP/NC composite propellants can be formulated with up to 15 percent more specific energy than seminitramines at the same burning temperature. By choosing appropriate polymerization conditions chemical stable compositions can be produced. ARC experiments give evidence that at temperatures from 120°C to 160°C the binder decomposes similar to NC. At higher temperatures the behaviour switches from NC type to GAP type decomposition. In comparison to GAP bound propellants the compressive strength of propellants bound by the GAP/NC compound can be significantly increased by up to 420 percent at room temperature. Although the examined seminitramine propellants bound with NC show a compressive strength which is about 10 percent higher at room temperature, the GAP/NC compositions are quite superior at elevated temperature.  相似文献   

16.
The burning rate characteristics of ammonium perchlorate (AP) based composite propellants is studied as a function of the chemical nature of the polymers used as binders. The following five types of polymers are used:(1) hydroxy‐terminated polybutadiene (HTPB)(2) polypropyleneglycol (PPG)(3) polysulfide (PS)(4) polyesterpolyol (PO)(5) azidomethylmethyloxetane (AMMO) Experiments are conducted using differential thermal analysis (DTA), thermogravimetric analysis (TG), and burning rate analysis. The AP/PS propellant shows the highest burning rate and the AP/PO propellant shows the lowest burning rate within the propellants tested. Though the burning rate appears to be very dependent on the type of binder used, the characteristics of burning rate versus pressure cannot be correlated with the thermochemical data obtained by DTA and TG. The results of the photographic observation of the burning surface indicate that the formation of a melting layer of the binder reduces the burning rate due to the reduced reaction rate between the binder and the AP particles.  相似文献   

17.
This paper reports a series of experiments involving ammonium dinitramide (ADN), a new energetic oxidizer of potential use in composite solid propellants. The experiments include (a) self‐deflagration of pressed pellets of ADN; (b) combustion of sandwiches with ADN laminae on both sides of a binder lamina that is either “pure” or filled with particulate oxidizer and other additives; and, (c) combustion of propellants with a bimodal oxidizer size distribution, wherein, combustion of coarse ADN and fine AP (ammonium perchlorate) and vice versa were used, in addition to mixtures of coarse ADN and AP, fine ADN and AP, and all‐ADN or all‐AP formulations.  相似文献   

18.
利用国军标方法及CAD系统软件,在标准条件(pc∶p0=70∶1)下,计算了含1,1-二氨基-2,2-二硝基乙烯(FOX-7)的各类推进剂的能量特性参数,分析了氧化剂(AP、RDX、CL-20)及黏合剂(HTPB、PET、GAP、PBAMO)等成分对FOX-7推进剂能量特性的影响。结果表明,将AP加入HTPB/FOX-7推进剂配方中取代FOX-7可有效改善氧条件,有利于推进剂能量的提高。在黏合剂含量较低(质量分数<8%)的推进剂体系中,使用惰性黏合剂有利于提高推进剂的能量;而在黏合剂含量较高(质量分数>10%)的推进剂体系中,使用含能黏合剂提高推进剂能量的幅度优于惰性黏合剂,且GAP优于PBAMO。用FOX-7取代NEPE推进剂中的AP,推进剂最大理论比冲可达2 567 N.s/kg。由GAP/FOX-7/RDX组成的无烟推进剂,在很宽的范围内都可以达到2 400 N.s/kg以上的理论比冲值。  相似文献   

19.
Nitramines are known to produce lower burning rates and higher pressure exponent (η) values. Studies on the burning rate and combustion behavior of advanced high‐energy NG/PE‐PCP/HMX/AP/Al based solid propellant processed by slurry cast route were carried out using varying percentages of HMX and AP. It was observed that propellant compositions containing only AP and Al loaded (total solids 75 %) in NG plasticized PE‐PCP binder produce comparatively lower pressure exponent (η) values similar to AP‐Al filled HTPB based composite propellants. However, energetic propellants containing high level of nitramine (40–60 %) produce high pressure exponent (0.8–0.9) values in the same pressure range. Incorporation of fine particle size AP (ca. 6 μm) and change in its concentration in the propellant composition reduces η value marginally and influences the burning rate. However, such compositions have higher friction sensitivity.  相似文献   

20.
This paper presents an overview of a modified composite propellant formulation to meet future requirements. The composite propellant mixtures were prepared using nitro functionalized Hydroxyl‐Terminated Polybutadiene (Nitro‐HTPB) as a novel energetic binder and addition of energetic plasticizer. The new propellant formulation was characterized and tested. It was found that the Nitro‐HTPB propellant with and without energetic plasticizer exhibited high solid loading, high density, and reasonable mechanical properties over a wide range of temperatures. It was shown that the burning rate of Nitro‐HTPB propellant is up to 40% faster than that of the HTPB propellant. These results are encouraging and suggest that it should be possible to improve the ballistic performance of popular HTPB propellants through use of the studied Nitro‐HTPB binder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号