首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two new highly stable energetic salts were synthesized in reasonable yield by using the high nitrogen‐content heterocycle 3,4,5‐triamino‐1,2,4‐triazole and resulting in its picrate and azotetrazolate salts. 3,4,5‐Triamino‐1,2,4‐triazolium picrate (1) and bis(3,4,5‐triamino‐1,2,4‐triazolium) 5,5′‐azotetrazolate (2) were characterized analytically and spectroscopically. X‐ray diffraction studies revealed that protonation takes place on the nitrogen N1 (crystallographically labelled as N2). The sensitivity of the compounds to shock and friction was also determined by standard BAM tests revealing a low sensitivity for both. B3LYP/6–31G(d, p) density functional (DFT) calculations were carried out to determine the enthalpy of combustion (ΔcH (1) =−3737.8 kJ mol−1, ΔcH (2) =−4577.8 kJ mol−1) and the standard enthalpy of formation (ΔfH° (1) =−498.3 kJ mol−1, (ΔfH° (2) =+524.2 kJ mol−1). The detonation pressures (P (1) =189×108 Pa, P (2) =199×108 Pa) and detonation velocities (D (1) =7015 m s−1, D (2) =7683 m s−1) were calculated using the program EXPLO5.  相似文献   

2.
Energetic furoxan (E,E)‐3,4‐bis(oximomethyl)furoxan (DPX1) was synthesized in 75 % yield, using a literature procedure, from a precursor readily available in one step from nitromethane. DPX1 was characterized for the first time as an energetic material in terms of calculated performance (Vdet = 8245 m s−1; pCJ = 29.0 GPa) and measured sensitivity (impact: 10 J; friction: 192 N; Tdec: 168 °C). DPX1 exhibits a sensitivity less than that of RDX, and a performance significantly higher than 2,4,6‐trinitrotoluene (TNT).  相似文献   

3.
A triazolotriazine carbonitrile ( 1 ) was formed by diazotization of 3‐amino‐5‐cyano‐1,2,4‐triazole followed by treatment with nitroacetonitrile. Cyclization of the C≡N bond with sodium azide results in a tetrazolyl triazolotriazine ( 2 ). Formation of the sodium salt of 2 , followed by metathesis with [PPN][Cl] resulted in the organic salt 3 . Compounds 1 , 2 , and 3 were characterized by elemental analysis and infrared, 1H, and 13C{1H} NMR spectroscopy and 1 and 3 were characterized by single‐crystal X‐ray diffraction. Compound 2 has a density of 1.819 g cm−1, is thermally stable up to 305 °C, and is insensitive to impact, friction, and electrical discharge. The detonation pressure and velocity of 2 are calculated to be 27.04 GPa and 8.312 km s−1, respectively, making this a 1,3,5‐triamino‐2,4,6‐trinitrobenzene (TATB) replacement candidate.  相似文献   

4.
To improve the safety of RDX (hexogen), an energetic polymer (HP‐1) was introduced to coat RDX with 2,4,6‐trinitrotoluene (TNT) by combining the solvent–nonsolvent and the aqueous suspension‐melting method. Scanning electron microscope (SEM), transmission electron microscope (TEM), and X‐ray photoelectron spectrometry (XPS) were employed to characterize the samples, and the role of HP‐1 in the coating process was discussed. The impact sensitivity, friction sensitivity, and the thermal stability of unprocessed and coated RDX were investigated, and the explosion heat of samples was also estimated. Results indicate that HP‐1 improves the wetting ability of the liquid coating material on RDX surface and reinforces the connection between RDX and the coating material. By surface coating, the impact and friction sensitivity of RDX decrease obviously; the drop height (H50) is increased from 37.2 to 58.4 cm, and the friction probability is reduced from 92 to 38%. The activation energy (E) and the self‐ignition temperature increase by 10457.38 J⋅mol−1 and 1.8 K, respectively. The explosion heat is reduced merely by 0.93%.  相似文献   

5.
Molecular orbital calculations were performed for the geometric and electronic structures, band gap, thermodynamic properties, density, detonation velocity, detonation pressure, stability and sensitivity of 1,3,4,5‐tetranitropyrazole ( R23 ). The calculated density (approx. 2060 kg m−3), detonation velocity (approx. 9.242 km s−1) and detonation pressure (approx. 41.30 GPa) of the model compound are appearing to be promising compared to hexahydro‐1,3,5‐trinito‐1,3,5‐triazine (RDX) and octahydro‐1,3,5,7‐tetranitro‐l,3,5,7‐tetrazocine (HMX). Bader’s atoms‐in‐molecules (AIM) analysis was also performed to understand the nature of the intramolecular N ⋅⋅⋅ O interactions and the strength of trigger X NO2 bonds (where XC, N) of the optimized structure computed from the B3LYP/aug‐cc‐pVDZ level.  相似文献   

6.
The high‐energy insensitive compound trifurazano‐oxacycloheptatriene (TFO) was first by synthesized through special etherification. The reaction mechanism and reaction conditions were discussed. TFO has a low melting point (78.6 °C) and good compatibility. TFO is insensitive to impact and friction and has similar detonation velocity (7.7 km s−1) and detonation pressure (35.6 GPa) to RDX.  相似文献   

7.
The CTE and the theoretical density are important properties for energetic materials. To obtain the CTE and the theoretical density of 1,3,5‐trinitro‐1,3,5‐triazacyclohexane (RDX), XRD, and Rietveld refinement are employed to estimate the dimensional changes, within the temperature range from 30 to 170 °C. The CTE of a, b, c axis and volume are obtained as 3.07×10−5 K−1, 8.28×10−5 K−1, 9.19×10−5 K−1, and 20.7×10−5 K−1, respectively. Calculated from the refined cell parameters, the theoretical density at the given temperature can be obtained. The theoretical density at 20 °C (1.7994 g cm−3) is in close match with the RDX single‐crystal density (1.7990 g cm−3) measured by density gradient method. It is suggested that the CTE measured by XRD could perfectly meet with the thermal expansion of RDX.  相似文献   

8.
Energetic metal organic frameworks (MOFs) with energetic anions as ligands can be used as new‐generation explosives. Many powerful anions have been introduced into energetic MOFs to improve the properties; however, the hydroxyl as a common group for energetic MOFs has rarely been studied. In this article, we present two examples of energetic MOFs ([Cu(atz)(NO3)(OH)]n) and [Zn(ata)(OH)] (atz=4‐amino‐1,2,4‐triazole; ata=5‐amino‐1H‐tetrazole) with the hydroxyl group as the ligand. Crystal structure analyses reveal that the two compounds possess compact two‐dimensional (2‐D) structures with densities up to 2.41 g cm−3 and 2.54 g cm−3, respectively. These two compounds have excellent physicochemical properties. The results demonstrate that a hydroxyl group as the ligands could commendably increase the densities of energetic MOFs, thereby enhancing the detonation performance. It is anticipated this work will open a new direction for the development of energetic MOFs.  相似文献   

9.
The synthesis and characterization of the 4,5‐dicyano‐2H‐1,2,3‐triazole anion in its 5‐aminotetrazole, 1,5‐diaminotetrazole, and 1,5‐diamino‐4‐methyl‐tetrazole salts are reported. All compounds were characterized by IR, 1H NMR, and 13C NMR spectroscopy, as well as elemental analyses. Their thermal decompositions were investigated by TG‐DSC. The densities, combustion heats, and sensitivity properties were tested. Additionally, enthalpies of formation, detonation pressures, detonation velocities, and heats of detonation were calculated. The compounds have potential application in the energetic materials field.  相似文献   

10.
1,4‐Dihydro‐5H‐(dinitromethylene)‐tetrazole ammonium salt ((NH4)2DNMT), a high nitrogen energetic compound, was synthesized and structurally characterized by single‐crystal X‐ray diffraction. The thermal behavior of (NH4)2DNMT was studied with DSC and TG‐DTG methods. The kinetic equation of the thermal decomposition reaction is: dα/dT=1013.17/3β(1−α)−2 exp(−1.388×105/RT). The critical temperature of thermal explosion is 182.7 °C. The specific heat capacity of (NH4)2DNMT was determined and the molar heat capacity is 301 J mol−1 K−1 at 298.15 K. The adiabatic time‐to‐explosion of (NH4)2DNMT was calculated to be 277 s. The detonation velocity and detonation pressure were also estimated. All results showed that (NH4)2DNMT presents good performance.  相似文献   

11.
The compatibility of tetraethylammonium decahydrodecaborate (BHN) with some energetic components and inert materials of solid propellants was studied by DSC method, where glycidyl azide polymer (GAP), cyclotrimethylenetrinitramine (RDX), cyclotetramethylenetetranitroamine (HMX), lead 3‐nitro‐1,2,4‐triazol‐5‐onate (NTO‐Pb), hexanitrohexaazaisowurtzitane (CL‐20), 3,4‐dinitrofurzanfuroxan (DNTF), N‐guanylurea‐dinitramide (GUDN), aluminum powder (Al, particle size=12.18 μm) and magnesium powder (Mg, particle size: 44–74 μm) were used as energetic components and polyoxytetramethylene‐co‐oxyethylene (PET), polyethylene glycol (PEG), addition product of hexamethylene diisocyanate and water (N‐100), hydroxyl terminated polybutadiene (HTPB), cupric adipate (AD‐Cu), cupric 2,4‐dihydroxy‐benzoate (β‐Cu), lead phthalate (ϕ‐Pb), carbon black (C. B.), aluminum oxide (Al2O3), 1,3‐dimethyl‐1,3‐diphenyl urea (C2), di‐2‐ethylhexyl sebacate (DOS) and potassium perchlorate (KP), were used as inert materials. It was concluded that the binary systems of BHN with NTO‐Pb, CL‐20, aluminum powder, magnesium powder, PET, PEG, N‐100, AD‐Cu, β‐Cu, ϕ‐Pb, C. B., Al2O3, C2, DOS, and KP are compatible, and systems of BHN with GAP and HMX are slightly sensitive, and with RDX, DNTF, and GUDN are incompatible. The impact and friction sensitivity data of BHN and BHN in combination with the energetic materials under present study were obtained, and there was no consequential affiliation between sensitivity and compatibility.  相似文献   

12.
Two types of polymeric sols, resorcinol‐formaldehyde (RF) and resorcinol‐furfural (RFur), were mixed in a water‐containing medium with aqueous solutions of inorganic salts: NH4ClO4, Mg(ClO4)2, and NH4NO3. After gelation and an ambient pressure drying, hybrid nanocomposites with properties of energetic materials were obtained. It was stated that salt concentration and addition of a second solvent (e.g., methanol or N,N‐dimethylformamide) to the mixture of reagents have crucial meaning for gel formation. In the case when only water was used, the mixture of organic sol/inorganic salt did not transfer from sol to gel, and precipitates were formed. Conventional drying of wet gelled composites leads to rigid material called xerogels. The RF xerogels are red and RFur xerogels are black. Typically, xerogels are transparent at low salt concentration (below 30%). The microstructure, morphology, and some other properties of chosen composites were studied by means of HR SEM, AFM, XRD, DTA/TG, and N2 adsorption isotherm techniques. SEM observation revealed that sizes of the oxidizer particles vary from less than 100 nm to ca. 1000 nm. XRD analyses also confirmed the presence of nanometer‐sized crystals of oxidizers in some formulations. The specific surface area of polymeric matrix/oxidizer composites was found to be in the range from 0.002 to 0.3 m2 g−1. After removing the salt from the composites (by extraction with boiling water), the specific surface area grows even up to 210 m2 g−1. TG/DTA analyses showed that the tested composites decompose as typical energetic materials. If pre‐heated and exposed to flame, some of them (especially RF/Mg(ClO4)2 composites) undergo violent deflagration with loud sound and flash effect.  相似文献   

13.
Six nitrogen‐doping CL‐20 derivatives were designed and investigated as energetic materials at B3LYP/6‐31G** level based on the density functional theory method. Results show that nitrogen‐doping derivatives exhibit high crystal densities (1.98∼2.18 g cm−3) and positive heats of formation (451.68∼949.68 kJ mol−1). Among nitrogen‐doping derivatives, 2,4,6,8,10,12‐hexanitro‐2,4,6,8,9,10,12‐heptaazaisowurtzitane(A1), 2,4,6,8,10,12‐hexanitro‐2,3,4,6,8,9,10,12‐octaazaisowurtzitane(B1) and 2,4,6,8,10,12‐hexanitro‐1,2,3,4,6,8,9,10,12‐nonaazaisowurtzitane(C1) possess better detonation velocity and pressure than CL‐20, and A1 gives the best performance (D K‐J•A1=9.6 km s−1; P K‐J•A1=43.07 GPa). Moreover, the specific impulse, brisance, and power of N‐doping CL‐20 derivatives are also higher than that of CL‐20. The thermal stability and sensitivity of nitrogen‐doping molecules were analyzed via the bond dissociation energy (BDE ), the characteristic height (h50) and electrostatic sensitivity (E ES). The results indicate that the stability of A1, B1 and 2,4,6,8,10,12‐hexanitro‐1,2,3,4,6,7,8,9,10,12‐decaazaisowurtzitane(D1) is comparable with that of CL‐20. Considering detonation performance and stability, A1 and B1 may be promising candidates as energetic materials with superior detonation performance and favorable stability.  相似文献   

14.
Ab initio electronic structure calculations at the MP2/cc‐pVTZ level predict the vibrational stability of the theoretical molecule tetrakis(nitratoxycarbon)methane, designated CLL‐1. The gas phase enthalpy of formation, predicted to be +1029.3 kJ mol−1 using the G3(MP2) method, and the estimated density of 1.87 g cm−3 are used to predict the explosive performance properties using the equilibrium thermochemical code CHEETAH. The predicted detonation velocity (8.61 km s−1) and pressure (33.1 GPa) are similar to those of RDX, but with a significantly higher detonation temperature (6740 K). Finally, the stability of this theoretical molecule is investigated by calculating the lowest energy unimolecular decomposition pathways of the HCO3N model compound as well as barriers to rearrangement upon interaction of two HCO3N molecules.  相似文献   

15.
Energetic tetrazine‐1,3‐dioxide, 5,7‐dinitrobenzo‐1,2,3,4‐tetrazine‐1,3‐dioxide ( DNBTDO ), was synthesized in 45 % yield. DNBTDO was characterized as an energetic material in terms of performance (Vdet 8411 m s−1; pC J 3.3×1010 Pa at a density of 1.868 g cm−3), mechanical sensitivity (impact and friction as a function of grain size), and thermal stability (Tdec 204 °C). DNBTDO exhibits a sensitivity slightly higher than that of RDX , and a performance slightly lower (96 % of RDX ).  相似文献   

16.
Energetic azoles have shown great potential as powerful energetic molecules, which find various applications in both military and civilian fields. This work describes the synthesis, characterization and performance evaluation of two energetic triazole derivatives, viz. N‐(2,4‐dinitrophenyl)‐3‐nitro‐1H‐1,2,4‐triazole ( 1a ) and N‐(2,4‐dinitrophenyl)‐3‐azido‐1H‐1,2,4‐triazole ( 1b ). The compounds were synthesized from 3‐nitro‐1,2,4‐triazole and 3‐azido‐1,2,4‐triazole, by a simple synthetic route and structurally characterized using FT‐IR and NMR (1H, 13C) spectroscopy as well as elemental analysis. Thermal analyses on the molecules were performed using simultaneous TG‐DTA. Both compounds ( 1a , 1b ) showed good thermal stability with exothermic decomposition peaks at 348 °C and 217 °C, respectively, on DTA. The energetic and sensitivity properties of both compounds like friction sensitivities and heats of formation are reported. The heats of combustion at constant volume were determined using oxygen bomb calorimetry and the results were used to calculate the standard molar heats of formation (ΔfHm). The azido derivative ( 1b ) showed a higher positive heat of formation. The thermo‐chemical properties of the compounds as well as the thermal decomposition products were predicted using the REAL thermodynamic code.  相似文献   

17.
Optical properties of RDX, HMX, AP, HTPB/IPDI and a catalyzed NC/NG propellant (N5) were obtained from 2.5 μm to 18 μm using FTIR transmission spectrometry. Scattering-corrected KBr pellet methodology was used for the crystalline materials. Absorption index (k) was measured directly and refractive index (n) was deduced using dispersion theory. At 10.600 μm the absorption coefficients were AP, 190 cm−1 (240 cm−1 at 10.6036 μm); HTPB/IPDI, 360 cm−1; N5, 510 cm−1; RDX, 2800 cm−1; and HMX, 5670 cm−1.  相似文献   

18.
The M06‐2X/6‐311G(d,p) and B3LYP/6‐311G(d,p) density functional methods and electrostatic potential analysis were used for calculation of enthalpy of sublimation, crystal density and enthalpy of formation of some thermally stable explosives in the gas and solid phases. These data were used for prediction of their detonation properties including heat of detonation, detonation pressure, detonation velocity, detonation temperature, electric spark sensitivity, impact sensitivity and deflagration temperature using appropriate methods. The range of different properties for these compounds are: crystal density 1.51–2.01 g cm−3, enthalpy of sublimation 346.4–424.7 kJ mol−1, the solid phase enthalpy of formation 500.4–860.6 kJ mol−1, heat of detonation 13.64–17.57 kJ g−1, detonation pressure 33.0–37.0 GPa, detonation velocity 8.5–9.5 km s−1, detonation temperature 5488–6234 K, electric spark sensitivity 7.89–9.47 J, impact sensitivity 21–38 J, deflagration temperature 560–586 K and power [%TNT] 207–276. The results show that two novel energetic compounds N,N′‐(diazene‐1,2‐diylbis(2,3,5,6‐tetranitro‐4,1‐phenylene))bis(5‐nitro‐4H‐1,2,4‐triazol‐3‐amine) (DDTNPNT3A) and 1,1′‐(diazene‐1,2‐diylbis(2,3,5,6‐tetranitro‐4,1‐phenylene))bis(3‐nitro‐1H‐1,2,4‐triazol‐5‐amine) (DDTNPNT5A) can be introduced as thermally explosives with high detonation performance.  相似文献   

19.
The insensitive compound bis(nitrofurazano)furazan (BNFF) with high energy‐density was synthesized by three‐step reactions and fully characterized. The key reduction reaction was discussed. BNFF has a high crystal density (1.839 g cm−3) and a low melting point (82.6 °C). BNFF is insensitive to impact and friction and has similar detonation velocity (8680 m s−1) and detonation pressure (36.1 GPa) compared to RDX.  相似文献   

20.
A nanocomposite energetic material was prepared using sol‐gel processing. It was incorporated into the nano or submicrometer‐sized pores of the gel skeleton with a content up to 95 %. AP, RDX, and silica were chosen as the energetic crystal and gel skeleton, respectively. The structure and its properties were characterized by SEM, BET methods, XRD, TG/DSC, and impact sensitivity measurements. The structure of the AP/RDX/SiO2 cryogel is of micrometer scale powder with numerous pores of nanometer scale and the mean crystal size of AP and RDX is approx. 200 nm. The specific surface area of the AP/RDX/SiO2 cryogel is 36.6 m2 g−1. TG/DSC analyses indicate that SiO2 cryogel can boost the decomposition of AP and enhance the interaction between AP and RDX. By comparison of the decomposition heats of AP/RDX/SiO2 at different mass ratios, the optimal mass ratio was estimated to be 6.5/10/1 with a maximum decomposition heat of 2160.8 J g−1. According to impact sensitivity tests, the sensitivity of the AP/RDX/SiO2 cryogel is lower than that of the pure energetic ingredients and their mixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号