首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The surface modifier 3‐((4‐hydroxybutoxy)dimethylsilyl)propyl methacrylate (CD), which contains a double bond and a hydroxyl group, was synthesized through a coupling reaction of 1,4‐butanediol and (3‐methacryloxypropyl)dimethylchlorosilane. Subsequently, graphene oxide (GO) was functionalized with different amounts of CD from its edge carboxyl groups. Then, grafting through atom transfer radical polymerization of styrene in the presence of various amounts of the edge‐functionalized GO was carried out to evaluate the effect of graphene loading along with graft density. A peak at 3.8 ppm in the 1H NMR spectrum of CD associated with the methylene adjacent to the Si–O group indicated a successful coupling reaction. Attachment of CD on the edges of GO was evaluated using X‐ray photoelectron and Fourier transform infrared spectroscopies. Expansion of GO interlayer spacing by functionalization was evaluated using X‐ray diffraction. The ordered and disordered crystal structure of carbon was studied using Raman spectroscopy. The close ID/IG values for GO and various kinds of functionalized graphenes show the preserved graphitic crystallite size. Relaxation behaviour of polystyrene chains in the presence of graphene nanoplatelets and also the effect of graft content on chain confinement were studied using differential scanning calorimetry. High‐graft‐density nanocomposites show higher glass transition temperatures. Morphology of graphene nanoplatelets was studied using scanning electron and transmission electron microscopies. The flat and smooth morphology of graphene nanoplatelets is disturbed and also the transparency of the nanoplatelets decreases during the oxidation and functionalization processes. © 2014 Society of Chemical Industry  相似文献   

2.
We demonstrate a method to modify the surface of graphene oxide (GO) by grafting polymer chains using nitroxide mediated radical polymerization (NMRP). Surface modification by NMRP was achieved using GO functionalized with 2,2,6,6-tetramethyl-piperidine 1-oxyl (TEMPO, T) to produce graphene oxide-TEMPO (GO-T). GO prepared from graphite by the Hummer's method was facilely functionalized in one step with T. Graft polymerization reactions of styrene and isoprene were carried out using nitroxide chemistry to control the polymerization and the ‘grafting from the surface’ polymerization technique. GO-T acts as a multifunctional macroalkoxyamine initiating and controlling the polymerization in the presence of monomer. The grafting reactions were performed by dispersing GO-T in dimethylformamide and heating at 130 °C in the presence of monomer to form graphene oxide-g-polystyrene-TEMPO (GO-g-PS-T) and graphene oxide-g-polyisoprene-TEMPO (GO-g-PI-T). FT-IR, Raman, XPS, XRD, TGA and TEM data are consistent with the attachment of the TEMPO group to the GO surface and with polystyrene and polyisoprene being grafted onto the GO surface. The amount of PS and PI grafted to GO-T was estimated from TGA data to be approximately 34% for a 7 h reaction time and 68% for a 144 h reaction time, respectively.  相似文献   

3.
Surface-initiated ring-opening metathesis polymerization (SI-ROMP) was employed to prepare polymer-grafted graphene oxide (GO). Grubbs catalysts were immobilized onto GO surfaces followed by ROMP of norbornene from these active catalyst sites to result in polynorbornene (PNb)-functionalized GO (GO-PNb), whose structure and morphology were fully characterized by FTIR, Raman, NMR, XRD, TGA and SEM. The as-prepared hybrid material of GO-PNb is an intercalated layer structure with an improved solubility in organic solvents. Further epoxidation of double bonds along the PNb chains resulted in the epoxidized PNb-functionalized GO (GO-ePNb). The relatively low and irregular grafting ratio of PNb on GO measured by gravimetry mainly result from the effect of complex GO surfaces and the chain-transfer reactions in the polymerization process.  相似文献   

4.
An effective approach to prepare polyimide/siloxane‐functionalized graphene oxide composite films is reported. The siloxane‐functionalized graphene oxide was obtained by treating graphene oxide (GO) with 1,3‐bis(3‐aminopropyl)‐1,1,3,3‐tetra‐methyldisiloxane (DSX) to obtain DSX‐GO nanosheets, which provided a starting platform for in situ fabrication of the composites by grafting polyimide (PI) chains at the reactive sites of functional DSX‐GO nanosheets. DSX‐GO bonded with the PI matrix through amide linkage to form PI‐DSX‐GO films, in which DSX‐GO exhibited excellent dispersibility and compatibility. It is demonstrated that the obvious reinforcing effect of GO to PI in mechanical properties and thermal stability for PI‐DSX‐GO is obtained. The tensile strength of a composite film containing 1.0 wt% DSX‐GO was 2.8 times greater than that of neat PI films, and Young's modulus was 6.3 times than that of neat PI films. Furthermore, the decomposition temperature of the composite for 5% weight loss was approximately 30 °C higher than that of neat PI films. © 2015 Society of Chemical Industry  相似文献   

5.
采用自主设计的水辅混炼挤出设备,制备3种氧化石墨烯(GO)含量(0.1 %、0.3 %、0.5 %,质量分数,下同)的聚苯乙烯(PS)/GO纳米复合材料,观察样品的微观结构,测试其流变性能和热性能。结果表明,GO被较好剥离且呈网状较均匀地分散在PS基体中,这主要归因于螺杆混炼流场不断细化PS熔体中的GO悬浮液以及水对熔体的塑化和溶胀效应促进PS分子链插层进入GO片层之间的共同作用;低频区PS/GO样品的储能模量、复数黏度和松弛时间均比纯PS样品的高,这是因为较均匀分散的网状GO片与PS之间形成较强的分子间作用力,降低了PS分子链的活动性;PS/GO样品的热稳定性比纯PS样品的高,这归因于GO片在PS基体中呈网状分布和GO表面存在π键。  相似文献   

6.
In this study, clay‐dispersed polystyrene (PS) nanocomposites were prepared with the in situ atom transfer radical polymerization method and were subsequently electrospun to form nanofibers 450–650 nm in diameter. The polymer chains extracted from the clay‐dispersed nanofibers exhibited a narrow range of molecular weight distribution. Thermogravimetric analysis (TGA) confirmed a higher thermal stability of the resulting nanocomposites compared to PS. The effect of the weight ratio of montmorillonite on the thermal properties of the nanocomposites was also studied by TGA. Differential scanning calorimetry revealed that the addition of the nanoclay increased the glass‐transition temperature. Moreover, degradation of the bromide chain‐end functionality took place at low temperatures. Scanning electron microscopy showed that the average diameter of the fibers was around 500 nm. The dispersion of clay layers was also evaluated by Al atoms in the PS matrix with the energy‐dispersive X‐ray detection technique. Transmission electron microscopy confirmed the exfoliation of the nanoclay within the matrix. However, the clay layers were oriented along the nanofiber axis. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

7.
A rapid and efficient post-polymerization functionalization of poly(urea-co-urethane) (PUU) onto the graphene oxide (GO) nanosheets has been developed to produce super-acidic polymer/GO hybrid nanosheets. Thus, the surface of GO nanosheets were functionalized with 3-(triethoxysilyl)propyl isocyanate (TESPIC) from hydroxyl groups to yield isocyanate functionalized graphene oxide nanosheets. Then, sulfonated polymer/GO hybrid nanosheets were prepared by condensation polymerization of isocyanate-terminated pre-polyurea onto isocyanate functionalized graphene oxide nanosheets through the formation of carbamate bonds. FTIR and TGA results indicated that TESPIC modifier agent and poly(urea-co-urethane) were successfully grafted onto the GO nanosheets. The grafting efficiency of poly(urea-co-urethane) polymer onto the GO nanosheets was estimated from TGA thermograms to be 205.9%. Also, sulfonated polymer/GO hybrid nanosheets showed a proton conductivity as high as 3.7 mS cm?1. Modification and morphology of GO nanosheets before and after modification processes were studied by scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD).  相似文献   

8.
A facile route was adopted to graft polystyrene on poly(vinyl alcohol-co-ethylene) matrix. Poly(vinyl alcohol-co-ethylene)-graft-polystyrene (PVAE-g-PS) was then reinforced with two types of nanofillers, i.e., graphene oxide (GO) and nanodiamond functional graphene oxide (GO-ND). PVAE-g-PS/GO and PVAE-g-PS/GO-ND nanocomposite series reinforced with 0.1—5 wt.% nanofiller were fabricated by solution processing. Structure of nanofillers and composite was confirmed by FTIR. FESEM imaging revealed that nanodiamond functional GO platelets were fully incorporated into matrix. TGA demonstrated enhanced stability of PVAE-g-PS/GO-ND nanomposites containing GO-ND. Similarly, UL 94 and electrical conductivity measurement of GO-ND-based system were found to be superior compared to one of copolymer/GO.  相似文献   

9.
To improve the thermal and mechanical properties of liquid silicone rubber (LSR) for application, the graphene oxide (GO) was proposed to reinforce the LSR. The GO was functionalized with triethoxyvinylsilane (TEVS) by dehydration reaction to improve the dispersion and compatibility in the matrix. The structure of the functionalized graphene oxide (TEVS‐GO) was evaluated by Thermogravimetric analysis (TGA), Fourier transform infrared (FTIR) spectra, X‐ray diffraction (XRD), and energy dispersive X‐ray spectroscopy (EDX). It was found that the TEVS was successfully grafted on the surface of GO. The TEVS‐GO/LSR composites were prepared via in situ polymerization. The structure of the composites was verified by FTIR, XRD, and scanning electron microscopy (SEM). The thermal properties of the composites were characterized by TGA and thermal conductivity. The results showed that the 10% weight loss temperature (T10) increased 16.0°C with only 0.3 wt % addition of TEVS‐GO and the thermal conductivity possessed a two‐fold increase, compared to the pure LSR. Furthermore, the mechanical properties were studied and results revealed that the TEVS‐GO/LSR composites with 0.3 wt % TEVS‐GO displayed a 2.3‐fold increase in tensile strength, a 2.79‐fold enhancement in tear strength, and a 1.97‐fold reinforcement in shear strength compared with the neat LSR. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42582.  相似文献   

10.
The novel surface‐modified sepiolite/unsaturated polyester (sepiolite/UP) nanocomposites were prepared by in situ polymerization. Sepiolite fibers were first organo‐modified by grafting of vinyltriethoxysilane (VTS) containing a double bond onto the surfaces and used as nanofillers. The morphology of sepiolites and nanocomposites were characterized by X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), and transmission electron microscope (TEM). Moreover, the thermal properties were determined by thermogravimetric analysis (TGA) and the thermal degradation mechanism was discussed. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

11.
Zhang B  Zhang Y  Peng C  Yu M  Li L  Deng B  Hu P  Fan C  Li J  Huang Q 《Nanoscale》2012,4(5):1742-1748
Herein, we report a facile approach to decorate graphene oxide (GO) sheets with poly(vinyl acetate) (PVAc) by γ-ray irradiation-induced graft polymerization. The content of PVAc in the obtained sample, i.e., PVAc grafted GO (GO-g-PVAc) is calculated by the loss weight in thermogravimetric analysis (TGA) curves. A GO-g-PVAc sample with a degree of grafting (DG) of 28.5% was well dispersed in common organic solvents and the dispersions obtained were extremely stable at room temperature without any aggregation, even after standing for 2 months. The excellent dispersibility and stability of GO-g-PVAc in common organic solvents are readily rationalized in terms of the full coverage of PVAc chains and solvated layer formation on graphene oxide sheets surface, which weakens the interlaminar attraction of GO sheets. This approach presents a facile route for the preparation of dispersible GO and shows great potential in the preparation of graphene-based composites by solution-processes.  相似文献   

12.
A novel graphene nanomaterial functionalized by octa(aminopropyl) polyhedral oligomeric silsesquioxane (OapPOSS) was synthesized and then confirmed by Fourier transform infrared spectroscopy, thermogravimetric analysis (TGA), Raman spectroscopy, X‐ray photoelectron spectroscopy, transmission electron microscopy, scanning electron microscopy with energy‐dispersive X‐ray spectroscopy (SEM EDX), atomic force microscopy, and X‐ray diffraction. The obtained functionalized graphene (OapPOSS‐GO) was used to reinforce waterborne polyurethane (WPU) to obtain OapPOSS‐GO/WPU nanocomposites by in situ polymerization. The thermal, mechanical, and hydrophobic properties of nanocomposites as well as the dispersion behavior of OapPOSS‐GO in the polymer were investigated by TGA, a tensile testing machine, water contact angle tests, and field emission SEM, respectively. Compared with GO/WPU and OapPOSS/WPU composites, the strong interfacial interaction between OapPOSS‐GO and the WPU matrix facilitates a much better dispersion and load transfer from the WPU matrix to the OapPOSS‐GO. It was found that the tensile strength of the OapPOSS‐GO/WPU composite film with 0.20 wt % OapPOSS‐GO exhibited a 2.5‐fold increase in tensile strength, compared with neat WPU. Better thermal stability and hydrophobicity of nanocomposites were also achieved by the addition of OapPOSS‐GO. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44440.  相似文献   

13.
Microwave‐induced reduction of graphite oxide (GO) is a promising method for rapid and scalable production of graphene. However, homogeneous incorporation of thus prepared graphene into polymer matrix is still a hard task. In this article, we present a ball‐milling assisted wet compounding method for the fabrications of microwave‐reduced GO (MRGO)/polymer composites. MRGO powders were added into a solution of polystyrene (PS) and then mechanically exfoliated in a stirring mill. Scanning electron microscopy and transmission electron microscopy investigations show that the graphene sheets have been homogeneously dispersed in the PS matrix. The composites show pronouncedly improved properties. The thermal degradation temperature of composites increased by 34°C with the addition of 5wt% MRGO in PS. Up to 76% improvement of storage modulus (at 30°C) is achieved by compounding with 10wt% MRGO.POLYM. COMPOS., 2013. © 2013 Society of Plastics Engineers  相似文献   

14.
Poly(butylene succinate‐co‐butylene adipate) (PBSA)/graphene oxide (GO) nanocomposites were synthesized via in situ polymerization for the first time. Atomic force microscopy demonstrated the achievement of a single layer of GO, and transmission electron microscopy proved the homogeneous distribution of GO in the PBSA matrix. Fourier transform infrared spectroscopy results showed the successful grafting of PBSA chains onto GO. With the incorporation of 1 wt % GO, the tensile strength and flexural modulus of the PBSA were enhanced by 50 and 27%, respectively. The thermal properties characterized by differential scanning calorimetry and thermogravimetric analysis showed increases in the melting temperatures, crystallization temperatures, and thermal stability. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 4075–4080, 2013  相似文献   

15.
A novel method of grafting styrene onto linear low‐density polyethylene (LLDPE) by suspension polymerization was systematically evaluated. Cyclohexane as a compatibilizer was introduced to swell and activate the surface of LLDPE molecular chain for amplifying the contact point of styrene monomer with LLDPE. A series of copolymer of grafting polystyrene (PS) onto LLDPE, known as LLDPE‐g‐PS, were prepared with different ratios of cyclohexane/styrene monomer and various LLDPE dosages. FTIR and 1H NMR techniques both confirmed successful PS grafting onto the LLDPE chains. In addition, SEM images of LLDPE‐g‐PS particles showed that the cross‐section morphology becomes smooth and dense with suitable cyclohexane dosages, indicating a better compatibility between LLDPE and PS. The highest grafting efficiency was 28.4% at 10 mL/g cyclohexane and styrene monomer when 8% LLDPE was added. In these conditions, the LLDPE‐g‐PS elongation at break increased by about 30 times compared with PS. Moreover, thermal gravimetric analysis (TGA) demonstrated that LLDPE‐g‐PS possesses much higher thermal stability than pure PS. Therefore, the optimal amount of cyclohexane as compatibilizer could increase the grafting efficiency and improve the toughness of PS. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41671.  相似文献   

16.
A three‐step grafting procedure has been used to graft the epoxy monomers (DER332) and the curing agents (diamino diphenyl methane (DDM), onto graphene oxide (GO) surface. The surface modification of GO has been performed by grafting of Jeffamine D‐2000, followed with subsequent grafting of DER332 and DDM, respectively. Fourier transform spectroscopy and thermogravimetric analysis indicate successful surface modification. The resulting modified GO, that is, (DED)‐GO, can be well dispersed in the epoxy monomers. The epoxy nanocomposites containing different GO contents can then be prepared through curing processes. The dispersion of GO in the nanocomposites is characterized by transmission electron microscopy. It is found that the tensile strength and elongation at break of epoxy nanocomposite with only 0.2 wt % DED‐GO are increased by 30 and 16% as compared with the neat epoxy resin, respectively. Dynamic mechanical analysis results show that 62% increase in storage modulus and 26°C enhancement in the glass transition temperature of the nanocomposite have been achieved with the incorporation of only 0.2 wt % of DED‐GO into the epoxy. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40236.  相似文献   

17.
乔伟强  刘丹 《广州化工》2011,(24):90-93
采用了一种简单有效地方法制备了高电活性的石墨烯/聚苯胺复合材料。首先,将苯胺在氧化石墨烯(GO)的水性分散液中氧化聚合,制备了氧化石墨烯/聚苯胺(GO/PANI),再将GO/PANI与水合肼反应,制得还原-氧化石墨烯/聚苯胺(R(GO/PANI))。利用透射电子显微镜(TEM),热失重分析(TGA)和循环伏安法(CV)对GO/PANI和R(GO/PANI的形貌,热稳定性和电化学性能进行了分析研究。结果表明,GO表面存PANI,且R(GO/PANI)的热稳定性和电活性都明显高于GO/PANI。  相似文献   

18.
Poly(sodium styrenesulfonate)-functionalized graphene was prepared from graphene oxide, using atom transfer radical polymerization and free radical polymerization. In atom transfer radical polymerization route, the amine-functionalized GO was synthesized through hydroxyl group reaction of GO with 3-amino propyltriethoxysilane. Atom transfer radical polymerization initiator was grafted onto modified GO (GO-NH2) by reaction of 2-bromo-2-methylpropionyl bromide with amine groups, then styrene sulfonate monomers were polymerized on the surface of GO sheets by in situ atom transfer radical polymerization. In free radical polymerization route, the poly(sodium 4-styrenesulfonate) chains were grafted on GO sheets in presence of Azobis-Isobutyronitrile as an initiator and styrene sulfonate monomer in water medium. The resulting modified GO was characterized using range of techniques. Thermal gravimetric analysis, scanning electron microscopy, transmission electron microscopy, and atomic force microscopy results indicated the successful graft of polymer chains on GO sheets. Thermogravimetric analysis showed that the amount of grafted polymer was 22.5 and 31?wt% in the free radical polymerization and atom transfer radical polymerization methods, respectively. The thickness of polymer grafted on GO sheets was 2.1?nm (free radical polymerization method) and 6?nm (atom transfer radical polymerization method) that was measured by atomic force microscopy analysis. X-ray diffractometer and transmission electron microscopy indicated that after grafting of poly(sodium 4-styrenesulfonate), the modified GO sheets still retained isolated and exfoliated, and also the dispersibility was enhanced.  相似文献   

19.
Oxidation debris (OD) and graphene oxide (GO) before and after OD removal were characterized by Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, mass spectroscopy, X-ray diffraction, transmission electron microscopy and potentiometric titration, respectively. OD removal decreased GO absorption intensity in UV/Vis spectra, caused changes in peak position and absorption intensity in FTIR spectra, and resulted in the decrease of ID/IG in Raman spectra. OD was amorphous and had higher content of acidic groups than purified GO. OD contributed 10–25% of overall surface charge density to unpurified GO in spite of small amount (ca. 1% mass). OD removal decreased significantly GO dispersibility in aqueous solution, but increased obviously the electrical conductivity of reduced graphene oxide (rGO) and the apparent density of compacted rGO. The removal of OD was necessary because of its striking effects on both GO spectroscopic and macroscopic properties. Batch desorption in NaOH solution was recommended for OD removal from as-prepared graphite oxide because of slow OD desorption kinetics.  相似文献   

20.
Polystyrene nanocomposite with mixed free and anchored chains was synthesized by atom transfer radical polymerization. Attachment of 3‐(trimethoxysilyl)propyl methacrylate with a double bond on the nanoporous silica aerogel surface results in a double bond grafted silica aerogel which could be incorporated into the polystyrene chains by a grafting‐through process. Conversion and molecular weight evaluation was carried out using gas chromatography and gel permeation chromatography, respectively. Double bond containing silica aerogel has an inconsiderable effect on conversion. There is no considerable discrepancy between the molecular weights of the free and anchored chains. Addition of silica aerogel with pendant CC bonds leads to increase of apparent rate constant of polymerization and also molecular weights. This is mainly because of initiator trapping in silica aerogel pores. Every percent of double bond containing silica aerogel with respect to styrene results in trapping of about 0.08 mol of ethyl alpha‐bromoisobutyrate among the silica pores. POLYM. COMPOS., 34:1648–1654, 2013. © 2013 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号