共查询到20条相似文献,搜索用时 62 毫秒
1.
单纯依靠温差阈值仅能判断设备的当前状态,无法对其发热趋势进行跟踪预测。环境温度和负载升高,有可能导致设备绝对温度的进一步升高,缺陷由一般发展为严重缺陷,因此需新的手段对变电设备热点温度进行预测。为解决上述问题,利用长短期记忆网络(Long Short Term Memory,LSTM)构建变电设备热点温度预测模型,对电网运行历史数据、环境气象历史数据、缺陷和故障历史数据及检测、试验、监测等状态历史数据进行大量样本的训练学习,基于深度神经网络算法拟合多源因素与设备热点温度的关联关系,实现设备热点温度状态发展趋势和缺陷严重程度的动态预测。最后通过变电站设备实际运维检测数据分析验证算法的可行性。 相似文献
2.
3.
4.
准确预测短期电力负荷在精细化电网规划、减少发电成本和提高用电质量等方面具有重要作用。为了大幅度的提高短期电力负荷预测的准确性,采用改进粒子群算法(IPSO)优化长短期记忆网络(LSTM),构建了一种新的电力负荷预测模型(IPSO-LSTM)。该模型采用能有效寻找全局最优解的IPSO,解决了LSTM预测电力负荷时超参数难以选取的问题。考虑到粒子群算法(PSO)中惯性权重和学习因子是固定不变的,这容易导致粒子群在前期掉入局部最优而错过全局最优,模型将惯性权重和学习因子由固定值改为非线性变化,以平衡其全局搜索能力和局部寻优能力。通过实际案例数据进行仿真分析,并与粒子群优化的长短期记忆网络(PSO-LSTM)、LSTM以及反向传播(back propagation, BP)神经网络算法的预测结果进行对比,验证了方法的预测效果更佳。实验表明,所提电力负荷预测模型具有较好的精度和稳定性。 相似文献
5.
6.
新型电力系统背景下,为提升母线负荷预测的精确性与稳定性,针对母线负荷噪声,提出一种考虑变分模态分解(variational mode decomposition,VMD)降噪优化和长短期记忆网络(long short-term memory,LSTM)的母线负荷预测方法。通过VMD将母线负荷分解为多个平稳的固有模态函数余项,将其分解项去除噪声后进行重组,达到降噪优化效果;对降噪后的母线负荷序列构建基于LSTM的时序预测模型,利用贝叶斯优化方法对网络初始超参数进行优化,以提高时序预测模型的精度。算例研究结果表明:利用VMD对母线负荷进行降噪优化后再进行预测,有利于预测结果更加稳定,且贝叶斯优化寻参解决了因初始参数设置不当而使预测结果精度不高的问题。该文方法可运用于母线短期负荷预测,并为电网调度运行提供了决策依据。 相似文献
7.
由于热连轧带钢卷取温度控制过程存在强非线性和时变性等因素影响,导致卷取温度控制精度和卷取命中率低。提出一种基于改进鲸鱼算法优化长短期记忆神经网络的方法,加入自适应参数优化和混合变异策略并融合小生境技术得到小生境技术混合变异策略的改进鲸鱼优化算法,建立改进鲸鱼算法优化LSTM的卷取温度预测模型,并与其他模型进行对比。仿真实验表明,在10个测试函数中,同其他先进算法相比,NMWOA算法具有更好的搜索能力和寻优精度;在卷取温度模型预测中,NMWOA LSTM模型同其他4种模型相比,卷取温度高精度命中率达到9750%,提高了卷取温度的预测精度。 相似文献
8.
售电量预测对优化供电结构以及了解经济走势具有重要意义,然而,传统售电量预测方法难以从售电量及其影响因素的数据中自动抽取到较好的数据特征。为此,文中提出一种基于长短期记忆网络的售电量预测模型,该模型通过分析售电量数据及其影响因素的相关性,提出一种行业聚类方法,该方法根据不同行业的数据特征对相似的行业进行聚类,并根据聚类结果训练长短期记忆网络模型。文中模型能够学习售电量数据以及相关影响因素的数据特征和内在关联关系。实验结果表明,文中所提出的预测模型比经典的预测模型具有更高的准确度。 相似文献
10.
针对变电站铅酸蓄电池容量预测模型存在的预测准确率低、泛化能力差等问题,提出一种基于Dropout优化算法和长短期记忆LSTM(long short-term memory)神经网络相结合的容量预测模型。该模型以LSTM神经网络为基础,结合变电站蓄电池充放电特性,将长时间跨度的蓄电池运行数据作为模型的输入,建立多层级LSTM预测模型来提升预测结果的准确率。同时基于Dropout优化算法完成LSTM预测模型的训练,提升模型的泛化能力。工程实际应用表明,相较于传统的LSTM神经网络和BP神经网络,改进模型在长时间跨度预测时具有更高的准确率和更好的泛化能力。 相似文献
11.
电力用户参与电网调度能够有效提升电网灵活性,但其行为的不确定性限制了需求响应的发展。针对此问题,文中首先构建激励型需求响应的实现框架,阐述负荷聚合商(LA)如何整合需求侧资源参与电力市场业务,并将用户随激励政策进行响应的行为转换为需求弹性。然后,基于长短时记忆(LSTM)算法,提出一种集成LSTM的数据驱动的需求弹性预测方法,同时为提升预测模型性能,对源数据进行平滑与缩放处理,并增加损失函数权重系数。算例结果表明,与传统LSTM算法及k近邻预测法相比,文中所提预测方法用于用户需求弹性预测时平均预测误差分别降低了5.33%和28.8%,用于总负荷预测时平均绝对百分比误差(MAPE)分别降低了2.06%和3.09%。同时文中基于集成LSTM分析了平滑、缩放数据预处理对预测精度的影响,结果表明对原始数据进行预处理可有效提升预测精度。 相似文献
12.
针对电力大数据存在数据随机缺失进而降低长短期记忆模型(Long Short-term Memory, LSTM)预测准确率的问题,本文提出了一种基于改进LSTM的电力设备状态融合预测模型。该模型首先对状态数据进行缺值检测和平稳分析,根据历史数据利用差分整合移动平均自回归模型(Autoregressive Integrated Moving Average model, ARIMA)对缺失的数值进行预测,并将预测的数值补充至相应的缺失位置;然后将新的完整数据输入到ARIAM模型和改进LSTM模型中以获取两种预测值;最后根据改进LSTM模型的学习准确率和ARIAM模型的拟合度对预测值进行权重分配,并在此基础上进行状态趋势融合预测。为了验证本文模型的普适性和预估准确性,选择电力负荷数据开展实验,结果表明:基于改进LSTM的电力设备状态融合预测模型在数据完整情况下的预测准确率比ARIAM和LSTM分别提高了52%和25% ,在数据缺失情况下的预测准确率分别提高了44%和57%。 相似文献
13.
实现电力设备温度的准确预测对于保障电力系统安全和提高维修效率具有重要意义.传统预测方法无法满足高精度的预测要求,提出一种基于改进型长短期记忆(long short-term memory,LSTM)神经网络的电力设备温度预测方法,利用去池化的卷积神经网络(convolutional neural networks,CN... 相似文献
14.
从特征工程角度对风速与风向间的相关性进行分析,结果表明,风速与风向包含的特征信息不同,可以同时将其作为输入变量,用于训练模型。该结果也为输入变量时间长度的选择提供了依据。将风速分解为东西及南北方向2个正交的一维变量,以防止多维变量增加方法复杂度。采用长短时记忆神经网络(LSTM)分别对2个方向风速训练预测模型,并将预测结果还原为风速与风向预测数据。实验结果表明,所提方法能够更好地捕捉风速与风向中的信息量,在风速与风向的预测误差分别小于1.0 m/s和5°时,预测准确率可达到90%以上。 相似文献
15.
16.
由于光伏发电量具有波动性,且现有的光伏发电量预测技术存在气象因素考虑不全面、特征提取不充分等问题,为提高光伏发电量预测精度,文中提出一种改进的典型气象年方法(TMY Method)生成典型气象年数据,并结合广义回归神经网络(GRNN)进行光伏发电量预测。首先,选择6种历史气象指标,利用Finkelstein-Schafer统计方法选择典型气象周,并生成典型气象年数据;然后,使用因子分析法对会影响光伏发电量的气象指标进行筛选,对筛选出的气象指标和日光伏发电量进行标准化处理后,将其作为GRNN模型的初始输入量,得到预测日的光伏发电量;最后,利用江苏省南京市的历史气象数据及日发电量数据对所设计的模型进行训练和预测。结果表明,与标准TMY Method-GRNN预测方法相比,文中所提预测方法有较好的预测性能。 相似文献
17.
18.
针对风速点预测无法对预测结果进行风险评估、区间预测难以满足电网精细化要求,以及现有静态预测方法难以描述风速序列长期相关性的现象,提出一种基于模糊信息粒化(Fuzzy Information Granulation,FIG)和长短期记忆(Long Short-Term Memory,LSTM)网络的动态预测模型。该方法先对风速序列进行模糊信息粒化,提取出粒化后数据的最大值(区间上界)、最小值(区间下界)和平均值。其次采用ADAM算法优化的LSTM网络对各粒化数据进行动态建模,得到能描述风速波动性的区间预测结果和点预测结果。算列表明,所提动态模型的预测效果比其它基本模型的预测效果更好。 相似文献
19.
针对箱式变压器环境封闭、散热性能差而导致变压器各部件温度较高,且变压器套管事故率高的现状,提出一种基于长短期记忆(Long Short-Term Memory, LSTM)神经网络的箱式变压器高压套管温度预测方法,对箱式变压器高压套管热流进行分析,建立基于LSTM的变压器高压套管温度预测模型,LSTM算法可以解决有效解决变压器高压套管温度预测所存在的非线性和时滞性的问题,通过红外传感技术对某小区箱式变压器高压套管相关数据进行在线监测,对现场数据进行预处理,通过算例分析验证了文中所提方法预测精度更高、误差更小、泛化能力更强。对比结果表明,所提方法优于普通循环神经网络(Recurrent Neural Network, RNN)和支持向量机(Support Vector Machine, SVM)预测方法,平均误差分别降低了27.4%和36.3%,预测精度更高,与变压器套管温度实测值更趋一致。 相似文献
20.
为了实现短期风速的精准预测,提出了一种基于秃鹰搜索算法优化长短时记忆神经网络的短期风速预测方法。将风速、风向、温度和气压作为特征量,采用秃鹰搜索(bald eagle search,BES)算法对长短时记忆神经网络(long short term memory,LSTM)的隐含层单元数量、正则化系数和初始学习率三个超参数进行优化,建立基于BES-LSTM的短期风速预测模型。采用实际风电场相关数据进行仿真分析,并与其他风速预测方法进行对比,结果表明,本文所提BES-LSTM模型预测结果的方均根误差、平均相对误差和可决系数分别为0.182、3.742%和0.992,各项指标均优于PSO-LSSVM模型和SSA-ELM模型,短期风速预测效果更好。 相似文献