首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper reports temperature influence on radiation degradation of hydrogenated amorphous silicon (a‐Si : H) solar cells. Degradation behaviors of a‐Si : H solar cells irradiated with protons at 331 K are compared with that at 298 K (room temperature). Variations with time in the post‐irradiation electrical properties are also investigated. It is found that the radiation degradation of the electrical properties at 331 K is significantly smaller than that at room temperature. Also, all the electrical properties (short‐circuit current, open‐circuit voltage, output maximum, and fill factor) recover with time after irradiation even at room temperature. The characteristic time of thermal annealing of short‐circuit current is larger as the temperature is higher. These results indicate that temperature during irradiation and elapsed time from irradiation to measurement is an important parameter for radiation degradation of a‐Si : H solar cells. Therefore, these parameters should be controlled in conducting the ground radiation tests. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
In this work, we practically demonstrated spectrum‐splitting approach for advances in efficiency of photovoltaic cells. Firstly, a‐Si:H//c‐Si 2‐junction configuration was designed, which exhibited 24.4% efficiency with the spectrum splitting at 620 nm. Then, we improved the top cell property by employing InGaP cells instead of the a‐Si:H, resulting in an achievement of efficiency about 28.8%. In addition, we constructed 3‐junction spectrum‐splitting system with two optical splitters, and GaAs solar cells as middle cell. This InGaP//GaAs//c‐Si architecture was found to deliver 30.9% conversion efficiency. Our splitting system includes convex lenses for light concentration about 10 suns, which provided concentrated efficiency exceeding 33.0%. These results suggest that our demonstration of 3‐junction spectrum‐splitting approach can be a promising candidate for highly efficient photovoltaic technologies. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
This paper studies the recombination at the perimeter in the subcells that constitute a GaInP/GaAs/Ge lattice‐matched triple‐junction solar cell. For that, diodes of different sizes and consequently different perimeter/area ratios have been manufactured in single‐junction solar cells resembling the subcells in a triple‐junction solar cell. It has been found that neither in GaInP nor in Ge solar cells the recombination at the perimeter is significant in devices as small as 500 μm × 500μm(2.5 ⋅ 10 − 3 cm2) in GaInP and 250μm × 250μm (6.25 ⋅ 10 − 4cm2) in Ge. However, in GaAs, the recombination at the perimeter is not negligible at low voltages even in devices as large as 1cm2, and it is the main limiting recombination factor in the open circuit voltage even at high concentrations in solar cells of 250 μm × 250μm (6.25 ⋅ 10 − 4 cm2) or smaller. Therefore, the recombination at the perimeter in GaAs should be taken into account when optimizing triple‐junction solar cells. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
ZnO nanowire (NW) grown on triple‐junction (TJ) solar cells via the hydrothermal growth method to enhance efficiency is investigated. In this paper, experimental results indicate that TJ solar cells with ZnO NW as an antireflection (AR) coating have the lowest reflectance in the short wavelength spectrum, as compared with those of bare TJ solar cells (without AR coating) and solar cells with SiNx and TiO2/Al2O3 AR coatings. ZnO NW has the lowest light reflection among all experimental samples, especially in the range of ultraviolet to green light (300–500 nm). It was found that ZnO NW could enhance the conversion efficiency by 6.92%, as compared with the conventional TJ solar cell. In contrast, SiNx and TiO2/Al2O3 AR coatings could only enhance the conversion efficiency by 3.72% and 6.46% increase, respectively. The encapsulated results also suggested that the cell with ZnO NW coating could provide the best solar cell performances. Furthermore, all samples are measured at tilt angles of 0°–90° and results show that the solar cells with ZnO NW have the highest efficiency at all tilt angles. Furthermore, a small NW diameter increases light absorption. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Japan's Research and Development (R&D) activities on high‐performance III–V compound space solar cells are presented. Studies of new CuInGaSe2 thin‐film terrestrial solar cells for space applications are also discussed. Performance and radiation characteristics of a newly developed InGaP/GaAs/Ge triple‐junction space solar cell, including radiation response, results of a flight demonstration test of InGaP/GaAs dual‐junction solar cells and CuInGaSe2 thin‐film solar cells, and radiation response of three component sub‐cells are explained. This study confirms superior radiation tolerance of InGaP/GaAs dual‐junction cells and CuInGaSe2 thin‐film cells by space flight experiments. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
The conversion efficiency of InGaP/(In)GaAs/Ge ‐based multijunction solar cells has been improved up to 29–30% (AM0) and 31–32% (AM1·5G) by technologies, such as double‐hetero wide band‐gap tunnel junctions, combination with Ge bottom cell with the InGaP first hetero‐growth layer, and precise lattice‐matching to Ge substrate by adding 1% indium to the conventional GaAs lattice‐match structure. Employing a 1·95 eV AlInGaP top cell should improve efficiency further. For space use, radiation resistance has been improved by technologies such as introducing of an electric field in the base layer of the lowest‐resistance middle cell, and EOL current matching of sub‐cells to the highest‐resistance top cell. A grid structure and cell size have been designed for concentrator applications in order to reduce the energy loss due to series resistance, and 38% (AM1·5G, 100–500 suns) efficiency has been demonstrated. Furthermore, thin‐film structure which is InGaP/GaAs dual junction cell on metal film has been newly developed. The thin‐film cell demonstrated high flexibility, lightweight, high efficiency of over 25% (AM0) and high radiation resistance. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
A GaInP/Ga(In)As/GaNAsSb/Ge 4J solar cell grown using the combined MOVPE + MBE method is presented. This structure is used as a test bench to assess the effects caused by the integration of subcells and tunnel junctions into the full 4J structure. A significant degradation of the Ge bottom subcell emitter is observed during the growth of the GaNAsSb subcell, with a drop in the carrier collection efficiency at the high energy photon range that causes a ~15% lower Jsc and a Voc drop of ~50 mV at 1‐sun. The Voc of the GaNAsSb subcell is shown to drop by as much as ~140 mV at 1‐sun. No degradation in performance is observed in the tunnel junctions, and no further degradation is neither observed for the Ge subcell during the growth of the GaInP/Ga(In)As subcells. The hindered efficiency potential in this lattice‐matched 4J architecture due to the degradation of the Ge and GaNAsSb subcells is discussed.  相似文献   

8.
We characterize the radiation‐induced damage of InGaP/GaAs/Ge solar cells for various proton irradiation energies and fluences using conventional current‐voltage (I‐V) measurements, external quantum efficiency, and a noncontact time‐resolved photoluminescence (PL) technique. From the I‐V curves, we obtain the conversion efficiency of the entire device. The external quantum efficiency showed that the short‐circuit current is only determined by the top InGaP subcell. To obtain accurate information about the point of maximum power, a new PL technique is introduced. The PL time decays of the InGaP and GaAs subcells are measured to obtain the characteristic decay time constants of carrier separation and recombination. We empirically verify that the time‐resolved PL method can be used to predict the electrical conversion efficiency of the subcells. We find that the limiting subcell at the point of maximum power is different from that for short‐circuit current. Radiation damage in unexpected regions of the device is revealed using this optical method.  相似文献   

9.
Inverted metamorphic multi‐junction solar cells have reached efficiencies close to 46%. These solar cells contain very high‐quality materials that exhibit strong luminescent coupling between the junctions. The presence of luminescent coupling has a significant impact on the behavior of multi‐junction solar cells affecting the optimal design of these devices. Because of the importance of studying devices under real operating conditions, the temperature dependence of the luminescent coupling is analyzed over a range of 25–120°C. Luminescent coupling analysis results show a reduction of the luminescent coupling current as a function of temperature in two tandem components of an inverted metamorphic triple junction solar cell such as GaInP/GaAs and GaAs/GaInAs solar cells. This reduction is quantified and examined by means of luminescent coupling analysis and modeling, electroluminescence measurements and optical modeling at the device and subcell level. The results of the models are verified and discussed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Characteristic degradation curves for proton and electron induced degradation of triple junction (3J) and isotype Ga0.5In0.5P/GaAs/Ge solar cells were obtained. The displacement damage dose methodology in combination with a varying effective threshold energy for atomic displacement T d ,e f f was used to analyze 3G28 and 3G30 3J cell data. The nonionizing energy loss (NIEL) was calculated analytically, and T d ,e f f was explicitly introduced as a fit parameter. Using the GaAs NIEL in fitting the 3J degradation data, a T d ,e f f of 21 eV was determined, whereas a T d ,e f f of 36 eV was found using the Ga0.5In0.5P NIEL. In GaAs and Ga0.5In0.5P single junction cells, the effective threshold energies for atomic displacement of 22 and 34 eV were determined. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
The status of the development of a new concentrator module in Japan is discussed based on three arguments, performance, reliability and cost. We have achieved a 26·6% peak uncorrected efficiency from a 7056 cm2 400 × module with 36 solar cells connected in series, measured in house. The peak uncorrected efficiencies of the same type of the module with 6 solar cells connected in series and 1176 cm2 area measured by Fraunhofer ISE and NREL are reported as 27·4% and 24·8% respectively. The peak uncorrected efficiency for a 550× and 5445 cm2 module with 20 solar cells connected in series was 28·9% in house. The temperature‐corrected efficiency of the 550 × module under optimal solar irradiation condition was 31·5 ± 1·7%. In terms of performance, the annual power generation is discussed based on a side‐by‐side evaluation against a 14% commercial multicrystalline silicon module. For reliability, some new degradation modes inherent to high concentration III‐V solar cell system are discussed and a 20‐year lifetime under concentrated flux exposure proven. The fail‐safe issues concerning the concentrated sunlight are also discussed. Moreover, the overall scenario for the reduction of material cost is discussed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
Four tunnel junction (TJ) designs for multijunction (MJ) solar cells under high concentration are studied to determine the peak tunnelling current and resistance change as a function of the doping concentration. These four TJ designs are: AlGaAs/AlGaAs, GaAs/GaAs, AlGaAs/InGaP and AlGaAs/GaAs. Time‐dependent and time‐average methods are used to experimentally characterize the entire current–voltage profile of TJ mesa structures. Experimentally calibrated numerical models are used to determine the minimum doping concentration required for each TJ design to operate within a MJ solar cell up to 2000‐suns concentration. The AlGaAs/GaAs TJ design is found to require the least doping concentration to reach a resistance of <10−4 Ω cm2 followed by the GaAs/GaAs TJ and finally the AlGaAs/AlGaAs TJ. The AlGaAs/InGaP TJ is only able to obtain resistances of ≥5 × 10−4 Ω cm2 within the range of doping concentrations studied. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Based on theoretical considerations, optimum triple‐junction bandgap combinations are determined in order to achieve highest electrical energy production for a mission on the Martian surface. The solar cell structures analysed in this contribution are based on the GayIn1–yP, GaxIn1–xAs and Ge material system. A comparison of theoretical and already realised triple‐junction solar cell structures is presented. For the evaluation of long‐term electrical energy production, different geographic and climatic Martian scenarios are considered. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
We report preliminary results on InGaP/InGaAs/Ge photovoltaic cells for concentrated terrestrial applications, monolithically integrated on engineered Si(001) substrates. Cells deposited on planar Ge/Si(001) epilayers, grown by plasma‐enhanced chemical vapor deposition, provide good efficiency and spectral response, despite the small thickness of the Ge epilayers and a threading dislocation density as large as 107/cm2. The presence of microcracks generated by the thermal misfit is compensated by a dense collection grid that avoids insulated areas. In order to avoid the excessive shadowing introduced by the use of a dense grid, the crack density needs to be lowered. Here, we show that deep patterning of the Si substrate in blocks can be an option, provided that a continuous Ge layer is formed at the top, and it is suitably planarized before the metalorganic chemical vapor deposition. The crack density is effectively decreased, despite that the efficiency is also lowered with respect to unpatterned devices. The reasons of this efficiency reduction are discussed, and a strategy for improvement is proposed and explored. Full morphological analysis of the coalesced Ge blocks is reported, and the final devices are tested under concentrated AM1.5D spectrum. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
The spectral electroluminescence of a monolithic triple‐junction solar cell reveals the sub‐cell open‐circuit voltages under variation of temperature and carrier concentration. We present an electroluminescence set‐up that is able to acquire a full spectrum in less than 10 s and give insight into the voltage‐extraction process. The sum of the sub‐cell voltages is in excellent agreement to open‐circuit voltages acquired under concentrated illumination. The temperature‐induced voltage losses are investigated and explained by a bandgap dependent increase in intrinsic carrier concentration. Finally, the accurate extraction of the sub‐cell bandgaps helps to identify a temperature rise with increasing current density. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
This paper deals with the temperature impact on the IV curve of concentrator photovoltaic (CPV) modules equipped with III–V triple‐junction solar cells. The electrical parameters of three FLATCON® type CPV modules are investigated using a sun simulator, where the module temperatures are varied by heating with infrared (IR) bulbs. It is found that all electrical parameters vary linearly to a change of temperature. The open circuit voltages and the fill factors (FFs) of the CPV modules decrease with increasing temperature. The relative decrease in open circuit voltage of the CPV modules is similar to the value of individual triple‐junction solar cells. In contrast, the short circuit current temperature coefficients are found to be different. The experimental results can be explained by considering thermal expansion effects in the module and temperature dependencies of the optical efficiencies of the Fresnel lenses. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
概述了硅太阳电池和硅单晶在空间高能粒子辐射下性能的变化及采用掺锡、掺锂提高太阳电池用硅单晶抗辐射性能的原理和方法。  相似文献   

18.
A thin SiOyNx film was inserted below a conventional SiNx antireflection coating used in c‐Si solar cells in order to improve the surface passivation and the solar cell's resistance to potential‐induced degradation (PID). The effect of varying the flow ratio of the N2O and SiH4 precursors and the deposition temperature for the SiOyNx thin film upon material properties were systematically investigated. An excellent surface passivation was obtained on FZ p‐type polished silicon wafers, with the best results obtained with a SiOyNx film deposited at a very low temperature of 130 °C and with an optical refractive index of 1.8. In the SiOyNx/SiNx stack structure, a SiOyNx film with ~6 nm thickness is sufficient to provide excellent surface passivation with an effective surface recombination velocity Seff < 2 cm/s. Furthermore, we applied the optimized SiOyNx/SiNx stack on multicrystalline Si solar cells as a surface passivation and antireflection coating, resulting in a 0.5% absolute average conversion efficiency gain compared with that of reference cells with conventional SiNx coating. Moreover, the cells with the SiOyNx/SiNx stack layers show a significant increase in their resistance to PID. Nearly zero degradation in shunt resistance was obtained after 24 h in a PID test, while a single SiNx‐coated silicon solar cell showed almost 50% degradation after 24 h. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
For the first time, the sensitivity to impurities of the solar cell conversion efficiency is reported for a state‐of‐the‐art (i.e., 18%) and advanced device architecture (i.e., 23%). The data are based on the experimental results obtained in the CrystalClear project for the state‐of‐the‐art cell process and extrapolated to a device with excellent front and rear surface passivation. Both device structures are not assumed to work in low injection level as several studies assumed before, but real operating conditions are considered. This is a fundamental difference with the past and required for modeling future high efficiency devices. The impurity with highest impact is Ti, followed by Cu, Cr, Ni and Fe, which form together a group two order of magnitude less sensitive than the former. In high efficiency devices, a large reduction of the impurity impact is visible for impurities with large capture cross‐section ratio like Fe, which reduces its relative difference in comparison with, for example, Cr, which has a small capture cross‐section ratio. In general, advanced devices will be more sensitive to the impurity content than the state‐of‐the‐art cell design. This effect is partly compensated by a reduction of the substrate thickness. The impurity sensitivity as function of the substrate thickness is reported. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
n‐type silicon wafer solar cells are receiving increasing attention for industrial application in recent years, such as the n‐type rear‐junction Passivated Emitter Rear Totally‐diffused (PERT) solar cells. One of the main challenges in fabricating the n‐PERT solar cells is the opening of the rear dielectric for localized contacts. In this work laser ablation is applied to locally ablate the rear dielectric. We investigate the laser damage to the emitter at the laser‐ablated regions using the emitter saturation current density, J0e,laser, extracted by two approaches. J0e,laser is observed to be injection dependent due to high J02 recombination caused by laser damage to the space charge region. By using the optimized laser ablation parameters, n‐PERT solar cells with an efficiency of up to 21.0% are realized. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号