首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
王政  赵娟 《电工技术》2023,(2):150-152
利用信号处理中的时域分析、频域分析以及时频分析的知识,采集滚动轴承的不同振动信号,并对不同状态下的滚动轴承的振动信号进行分析,进行滚动轴承不同状态下的时域分析对比、频域分析对比和时频分析对比,实现滚动轴承的故障诊断,得出时频分析判断更加准确但要综合各种分析考量的结论。  相似文献   

2.
针对滚动轴承诊断中难以获得大量故障样本的问题,拟结合迁移学习的思想,提出了一种基于迁移学习的多变量预测模型(TVPMCD)方法。该方法首先采用已知样本库建立基础变量预测模型(BVPM);然后利用少量的目标域已知样本更新基础变量预测模型,使得更新的基础变量预测模型能兼顾目标域已知样本的信息;同时,以目标域已知样本的判别误差最小为目标,剔除已知样本库中误识样本,建立迁移变量预测模型(简称TVPM);最后利用迁移变量预测模型对待测样本进行识别,从而可以有效地解决小样本的故障诊断问题。对滚动轴承数据的分析结果表明,适合于小样本的TVPMCD模式识别方法可以更快更准确地识别滚动轴承故障类型。  相似文献   

3.
针对非线性支持向量机分类准确率受核函数影响的问题,提出一种多尺度核支持向量机(multi-scale kernel support vector machine, MSK-SVM)分类模型,并将该模型应用于滚动轴承故障诊断。该模型在常用的多项式核、高斯核和Sigmoid核函数基础上,引入了Morlet、Marr和DOG小波核函数。利用不同核函数的全局性和局部性以及核函数尺度参数不同作用范围不同的特点,组合具有不同特性及不同尺度参数的核函数作为多尺度核。基于梯度下降法,自适应地确定多尺度核函数权值,得到MSK-SVM滚动轴承故障诊断模型。为说明算法有效性,分别基于滚动轴承故障数据集和全寿命周期数据集进行了实验验证,并分析了基于不同特性MSK和相同特性MSK的SVM模型分类性能。结果表明本文所提模型较传统单个核函数SVM分类准确率更高,且具有良好的泛化能力。  相似文献   

4.
电动机滚动轴承的故障诊断   总被引:3,自引:0,他引:3  
本文根据滚动轴承发生损伤故障时振动信号的特点,利用带通数字滤波和希尔伯特变换,对电动机轴承振动信号进行处理,然后对包络信号作谱分析,再从包络谱中提取故障特征频率分量,以诊断电动机轴承故障。实验结果表明,这种诊断方法是很有效的。  相似文献   

5.
滚动轴承在风电机组中广泛应用,其运行状态直接影响整台风机的性能。提出EEMD(总体平均经验模态分解)和Hilbert包络分析相结合的方法对滚动轴承进行故障诊断。经验模态分解具有自适应性,但存在一些不足,易产生虚假分量和模态混叠现象。针对EMD分解方法的不足,引入改进型算法EEMD。首先将振动加速度信号进行EEMD分解,计算各阶IMF峭度值的大小,选择峭度值较大的IMF分量,利用Hilbert变换对其进行包络谱分析,提取故障特征频率,辨识滚动轴承故障。通过对实验采集的滚动轴承振动信号进行分析,证明了该方法的有效性和准确性。  相似文献   

6.
电机滚动轴承故障诊断的新方法   总被引:3,自引:0,他引:3  
基于希尔伯特变换解调原理,提出一种对电机滚动轴承振动信号进行包络处理的方法,它根据振动信号,解析信号和包络函数在频域上的关系来制定算法,并同时在频域上直接实现带通滤波,而不用在时域上对信号进行滤波,最后从包络谱中提取轴承故障特征信息,达到诊断电机滚动轴承的目的。  相似文献   

7.
卷积神经网络(CNN)对空间特征具有敏感性,而Inception相比CNN具备多尺度提取特征优势;长短时记忆网络(LSTM)对时间特征具有敏感性,而深层长短时记忆网络(DLSTM)比LSTM具备更深层次提取特征优势。为了多尺度充分提取滚动轴承振动信号在空间和时间上的特征,实现滚动轴承故障诊断,提出了一种Inception通道和DLSTM通道结合的Inception DLSTM双通道滚动轴承故障诊断模型。对于Inception通道,把轴承振动信号经过小波变换生成的时频图作为输入,利用Inception网络多尺度提取时频图的空间特征信息;对于DLSTM通道,直接把轴承振动信号作为输入,利用DLSTM网络充分提取信号的时间特征信息。然后把两个通道输出的特征信息连接成一个时空特征向量,最后利用分类器进行轴承故障诊断识别。对轴承故障数据进行对比实验可得,Inception DLSTM双通道的故障识别准确率可达100%,具备良好的故障诊断和特征提取能力。  相似文献   

8.
为了解决滚动轴承故障诊断中人工选择卷积神经网络(CNN)结构具有不确定性从而导致诊断准确率低的问题,以CNN为基础,提出一种应用遗传算法(GA)自适应选择CNN网络结构的滚动轴承故障诊断新方法GA-CNN.首先对滚动轴承故障信号进行特征提取,然后将故障特征分别输入经GA改进的CNN和3组人工随机选择网络结构的CNN进行...  相似文献   

9.
信息融合方法应用到滚动轴承故障诊断之中,能有效地利用传感器资源最大限度地获取旋转机械中有关被测对象的状态信息.以滚动轴承小波分解后的能量信息作为特征,通过神经网络作为分类器对滚动轴承故障进行识别,经过一定的信息融合分析处理,能够较为准确地识别设备的故障.  相似文献   

10.
基于希尔伯特变换解调原理,提出一种对电机滚动轴承振动信号进行包络处理的方法,它根据振动信号、解析信号和包络函数在频域上的关系来制定算法,并同时在频域上直接实现带通滤波,而不用在时域上对信号进行滤波。最后从包络谱中提取轴承故障特征信息,达到诊断电机滚动轴承故障的目的  相似文献   

11.
提出了一种基于复局部均值分解(CLMD)和复信号包络谱(CSES)的滚动轴承故障诊断新方法。首先通过互相垂直安装的加速度传感器采集2个方向的振动信号,并将其组成一个复数信号;然后利用CLMD对二元复数信号进行自适应分解,将分解得到的复数信号的实部和虚部包络信号组成一个复包络信号,根据复傅里叶变换具有幅值增强和综合频率特性,直接对复包络信号进行复傅里叶变换,提取的故障特征频率更为清晰。通过滚动轴承不同位置的外圈故障实验,证明了所提方法能够实现故障特征增强,可用于诊断滚动轴承微弱故障和复合故障。  相似文献   

12.
针对滚动轴承工作环境复杂,轴承振动信号受噪声干扰难以提取故障特征以及传统故障诊断算法准确率较低的问题,提出了利用自适应噪声完备集合经验模态分解算法(CEEMDAN)联合卷积神经网络(CNN)内嵌长短期记忆神经网络(LSTM)的滚动轴承故障诊断方法。首先,利用CEEMDAN算法对轴承原始振动信号进行分解得到本征模态函数(IMF);然后计算重构后的信号的排列熵,归一化后作为特征向量;最后将特征向量输入至CNN-LSTM结合建立的深度学习模型中进行诊断识别。结果表明:所提方法具有更快的拟合速度和更高的准确率,平均故障诊断准确率达到98.63%。  相似文献   

13.
滚动轴承是旋转机械的重要部件之一,针对滚动轴承故障诊断问题,本文提出了一种多尺度排列熵(MPE)与粒子群优化(PSO)的支持向量机(SVM)相结合的算法。利用MPE方法得到轴承故障信号的故障特征,并将其作为特征向量输入PSO-SVM模型中,使用凯斯西储大学轴承故障数据进行验证,发现此方法可以有效进行滚动轴承的故障识别。同时将此方法与多尺度排列熵结合传统的SVM方法以及使用网格搜索优化的SVM方法所得故障分类结果进行比较,发现该方法在滚动轴承故障诊断的时效性以及准确率方面具有一定的优越性。  相似文献   

14.
基于DCT和EMD的滚动轴承故障诊断   总被引:1,自引:0,他引:1  
根据轴承故障振动信号特点,提出了一种离散余弦变换和经验模态分解相结合的轴承振动信号故障诊断新方法。将离散时间序列经过离散余弦变换处理成对应的系数向量,在阈值处理的基础上,重构信号提高故障信号的信噪比;对重构信号进行经验模态分解,通过相关系数计算去除伪分量,并进行频谱分析。仿真信号和轴承故障信号的分析表明,该方法提高了信噪比,降低了EMD运算成本,减少了IMF的数量,保证了IMF的物理意义,成功完成微弱故障诊断。  相似文献   

15.
为全面、准确地诊断滚动轴承故障,提出一种基于多元变分模态分解(MVMD)和全矢包络谱的滚动轴承故障诊断方法.首先,采用正交采样技术获取滚动轴承同一支撑处互相垂直方向上的振动信号,将其组成一个二元调制振荡信号.然后,运用MVMD从二元调制振荡信号中提取一组最佳的二元调制振荡信号,其对应的带宽之和最小.由于MVMD运用统一数学模型对2个方向的信号建模,可确保故障特征被分解到同一层,便于后续的信息融合.最后,运用Hilbert变换对每个二元调制振荡信号解调得到相应的包络信号,利用全矢谱融合2个方向的包络信号信息以得到全矢包络谱,进而诊断滚动轴承故障.仿真和试验结果证明了所提方法的可行性和有效性.  相似文献   

16.
为充分挖掘滚动轴承故障类别与振动信号间的潜在联系进而提升故障诊断精度,提出了一种基于尺度自适应卷积神经网络(SACNN)和改进门控循环单元(MGRU)混合模型的故障诊断方法.首先,提出了一种尺度自适应因子用以获取合适的CNN窗口尺寸从而更有效地提取振动信号中蕴含的局部故障信息,并在CNN中引入比例指数线性单元(SELU)以提升其训练过程的鲁棒性;随后,在GRU中嵌入SELU进一步提升网络稳定性,并改进GRU网络结构增强其时序特征的挖掘能力,进而更充分地提取局部故障信息中的时序特征;最后通过Softmax函数识别故障类别.经实验对比和分析表明,该方法具备较好的收敛性和稳定性,能够有效挖掘振动信号中蕴含的故障信息,准确识别不同转速下滚动轴承的故障类别且识别精度均高于99.5%,具有一定的应用价值.  相似文献   

17.
对于当前存在电机滚动轴承多种类型故障分类准确率不高的现象,提出一种改进天鹰优化算法(IAO)优化支持向量机(SVM)的电机滚动轴承故障诊断方法。首先,介绍了基本天鹰优化算法,然后引入Tent混沌映射和自适应权重对其改进,提高收敛速度,防止陷入局部最优;其次,对10种状态下的滚动轴承故障时域信号样本进行VMD分解,得到不同状态的时频域特征组成特征样本集。最后,利用IAO算法对支持向量机的惩罚参数(c)和核参数(g)进行优化,从而构建IAO-SVM滚动轴承故障诊断模型。最终结果表明,IAO-SVM诊断模型对电机滚动轴承10种状态下的故障诊断准确率最高达100%。  相似文献   

18.
针对滚动轴承振动信号的特征提取和故障诊断,提出了一种基于小波包信息熵和蛇优化算法(SO)优化支持向量机的滚动轴承故障诊断方法。使用小波包处理采集到的振动信号,构建小波包的能谱熵和系数熵,将构建的特征向量输入SO-SVM进行识别和分类;最终实现多故障模式识别,输出诊断结果。通过仿真实验表明,此方法对五组不同的样本诊断准确率达到99.17%~100%,且相比于果蝇算法优化支持向量机(FOA-SVM)和粒子群算法优化支持向量机(PSO-SVM)具有更高的故障识别分类效果。  相似文献   

19.
针对强背景噪声下滚动轴承的非线性、非平稳故障特征提取不足的问题,提出了融合概率主成分分析(PPCA)及1.5维Teager能量谱的故障特征分析方法。首先对信号进行概率主成分分析,通过对信号降维重构信号,提取信号故障特征主成分,去除强背景噪声干扰;然后对重构信号进行1.5维能量谱分析,从而获得轴承故障特征谱信息。利用所提方法对滚动轴承模拟数据及实验数据进行分析,结果表明与集合经验模态分解(EEMD)包络谱相比,采用PPCA与1.5维能量谱的分析方法在进行滚动轴承故障高阶倍频提取时具有一定的优势。  相似文献   

20.
研究针对滚动轴承故障诊断中的类型和位置分析问题,提出了一种基于集合经验模态分解(EEMD)的声阵列滚动轴承故障诊断分析方法。以EEMD分解信号的峭度和能量作为评价指标,提取包含故障信息的IMF分解信号,根据滚动轴承理论故障频率及其倍频分析对分解信号进行窄带滤波后通过Hilbert包络谱实现故障类型判断,通过对窄带滤波后的分解信号使用声阵列技术进行声像分析实现滚动轴承故障定位分析。最后通过试验进行了方法验证,结果表明过使用基于EEMD分解的阵列分析方法,可更为直观确定故障位置和故障类型,有利于有轨机车等多轴承驱动系统轴承故障的快速和实时诊断,对于确定检修、制定合理维修决策、改进维修质量具有十分重要指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号