首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ohmic contacts to the top p-type layers of 4H-SiC p+–n–n+ epitaxial structures having an acceptor concentration lower than 1×1019 cm−3 were fabricated by the rapid thermal anneal of multilayer Al/Ti/Pt/Ni metal composition. The rapid thermal anneal of multilayer A1/Ti/Pt/Ni metal composition led to the formation of duplex cermet composition containing Ni2Si and TiC phases. The decomposition of the SiC under the contact was found to be down to a depth of about 100 nm. The contacts exhibited a contact resistivity Rc of 9×10−5 Ω cm−2 at 21°C, decreasing to 3.1×10−5 Ω cm−2 at 186°C. It was found that thermionic emission through the barrier having a height of 0.097 eV is the predominant current transport mechanism in the fabricated contacts.  相似文献   

2.
The interdiffusion and intermetallic compound formation of Au/Nb bilayer thin films annealed at 200–400 °C have been investigated. The bilayer thin films were prepared by electron beam deposition. The Nb film was 50 nm thick and the Au film was 50–200 nm thick. The interdiffusion of annealed specimens was examined by measuring the electrical resistance and depth-composition profile and by transmission electron microscopy. Interdiffusion between the thin films was detected at temperatures above 325 °C in a vacuum of 10-4 Pa. The intermetallic compound Au2Nb3 and other unknown phases form during annealing at over 400 °C. The apparent diffusion constants, determined from the penetration depth for annealing at 350 °C, are 3.5 × 10−15 m2 s−1 for Nb in Au and 8.6 × 1107minus;15 m2 s−1 for Au in Nb. The Au surface of the bilayer films becomes uneven after annealing at over 400 °C due to the reaction.  相似文献   

3.
Thermal stability of novel Pd/Sn and Pd/Sn/Au Ohmic contacts to n-GaAs has been investigated and compared to the non-alloyed Pd/Ge and alloyed Au–Ge/Ni metallizations. Metallization samples are furnace annealed at various temperatures and systematically characterized utilizing Scanning Electron Microscopy (SEM) and current–voltage (IV) measurements. Contact resistivities, ρc, of the proposed metallization are measured using a conventional Transmission Line Model (cTLM) method. The Pd/Sn Ohmic contacts display superior thermal stability at 410°C when compared to the Pd/Ge contacts. After annealing at 410°C for 4 h, ρc of the Pd(50 nm)/Sn(125 nm) metallization remains in the low 10−5 Ω cm2 range, whereas ρc values increase to 10−4 Ω cm2 for the Pd(50 nm)/Ge(126 nm) contacts. At 410°C, the Pd/Sn/Au metallizations also display better thermal stability than that of non-alloyed Pd/Ge and alloyed Au–Ge/Ni metallizations. The long-term stability at 300°C of the Pd/Sn and Pd/Sn/Au Ohmic contacts is also reported.  相似文献   

4.
Al(60 nm) and Ti(40 nm)/Al(160 nm) metal layers have been deposited by thermal evaporation onto n-GaN epitaxial layers grown by metal organic chemical vapour deposition (MOCVD) on a c-plane sapphire substrate. The samples have been annealed at 300, 400, 700 or 900 °C for 10 min in vacuum. The microstructural and electrical properties of the contacts have been investigated by electron microscopy, X-ray diffraction and by current-voltage measurements. As-deposited Al and Ti/Al contacts were rectifying with Schottky barrier heights below 0.35 eV and 0.38 eV, respectively. After heat treatment at 300 °C and 400 °C both contacts exhibited linear current-voltage characteristics. After annealing at 700 °C Al contacts became rectifying with a barrier height of 0.42 eV, while Ti/Al contacts remained nearly linear at the same temperature. The electrical characteristics and XRD analysis indicated that the upper metal in Ti/Al contact diffused in the Ti layer already during deposition. Cross-sectional transmission electron microscopy revealed that in the case of Ti/Al contacts, the continuity of the Ti layers ceased when annealing above 700 °C. X-ray diffractions showed, that a Ti2N interface phase formed in Ti/Al contacts at 700 and 900 °C, and an AlN interface phase developed in the same contact at 900 °C.  相似文献   

5.
A detailed study on the microstructural changes that occur on annealing of Au/Pt/Ti ohmic contacts to n-type InGaAs has been carried out. The metal layers were deposited sequentially by electron beam evaporation onto InGaAs, doped with Zn to a level of 7 × 1018 cm–3, that was epitaxially grown on < 100 > InP substrates. The deposition sequence and metal layer thicknesses were: Ti (25 or 30 nm), Pt (25 or 30 nm) and Au (250 or 300 nm). Samples were annealed at temperatures ranging from 250–425 C in a nitrogen atmosphere. As-deposited contacts were Schottky barriers, while a minimum contact resistance of 2 × 10–5 cm2 was obtained by annealing in the 375–425 C range. Annealing resulted in the inward diffusion of Ti and outward diffusion of In and As, leading to the formation of TiAs, metallic In and Ga-rich InGaAs at the Ti/InGaAs interface. The Pt diffusion barrier was effective in preventing In diffusion into the outer Au layer and minimizing Au diffusion to the semiconductor.  相似文献   

6.
In this paper, the optimization of ohmic contacts for semiconductor lasers based on InGaAs/GaAs/GaAlAs layers is reported. Transmission electron microscopy (TEM) and electrical methods were used to study extensively the Pt/Ti/Pt/Au metallization system. The contact fabrication technology was optimized towards achieving the lowest electrical resistance. The technological control and optimization concerned the contact annealing temperature and thickness of metallic layers that form the contact. The average specific contact resistance was below 5×10−6 Ω cm2 (with the record value of 8×10−7 Ω cm2) for the 10 nm Pt/20 nm Ti/30 nm Pt/150 nm Au system. The presented system was used in fabrication of continuous wave (CW) operated laser diodes. The chips mounted on passively cooled copper block achieved optical powers over 1 W, threshold current density values of 140-160 A/cm2 and differential efficiencies above 1 W/A. The value of the characteristic temperature T0 for discussed lasers varied in the range of 180-200 K.  相似文献   

7.
Ba(Ti0.95Zr0.05)O3 (BTZ) thin films grown on Pt/Ti/SiO2/Si(100) substrates were prepared by chemical solution deposition. The structure and surface morphology of BTZ thin films has been studied by X-ray diffraction (XRD) and scanning electron microscope (SEM). At 100 kHz, the dielectric constant and dissipation factor of the BTZ film are 121 and 0.016, respectively. The ellipsometric spectrum of the BTZ thin film annealed at 730 °C was measured in the range of wavelength from 355 to 1700 nm. Assuming a five-layer model (air/surface roughness layer/BTZ/interface layer/Pt) for the BTZ thin films on platinized silicon substrates, the optical constant spectra (refractive index n and the extinction coefficient k) of the BTZ thin films were obtained.  相似文献   

8.
For growth temperatures in the range of 275°C to 425°C, highly conductive RuO2 thin films with either (110)- or (101)-textured orientations have been grown by metal-organic chemical vapor deposition (MOCVD) on both SiO2/Si(001) and Pt/Ti/SiO2/Si(001) substrates. Both the growth temperature and growth rate were used to control the type and degree of orientational texture of the RuO2 films. In the upper part of this growth temperature range ( 350°C) and at a low growth rate (< 3.0 nm/min.), the RuO2 films favored a (110)-textured orientation. In contrast, at the lower part of this growth temperature range ( 300°C) and at a high growth rate (> 3.0 nm/min.), the RuO2 films favored a (101)-textured orientation. In contrast, higher growth temperatures (> 425°C) always produced randomly-oriented polycrystalline films. For either of these low-temperature growth processes, the films produced were crack-free, well-adhered to the substrates, and had smooth, specular surfaces. Atomic force microscopy showed that the films had a dense microstructure with an average grain size of 50–80 nm and a rms. surface roughness of 3–10 nm. Four-probe electrical transport measurements showed that the films were highly conductive with resistivities of 34–40 μΩ-cm (at 25°C).  相似文献   

9.
Pt/Ti电极的扩散行为及其对铁电薄膜的影响   总被引:5,自引:0,他引:5  
采用直流磁控溅射方法制备Pt/Ti电极,用RBS、XRD、SEM方法研究了Pt和Ti的扩散行为,发现在氧气氛中进行热处理造成Ti层的快速氧化,Ti厚度对Pt/Ti的扩散有很大影响。Pt/Ti的扩散造成其上的铁我差的显微结构和性能。  相似文献   

10.
An outcome of the indirect doping concept conceived recently in NiGe-based Ohmic contacts has led to the development of annealed WSi-based Ohmic contacts to n-type GaAs for the first time. It was concluded that simultaneous addition of a “direct doping element” of Si in WSi2.7 and an “indirect doping element (M)” such as Au, Pd, Cu, or Ag, was essential. The M(5 nm)/WSi2.7(20nm)/W(50 nm) contacts showed Ohmic behavior after annealing with the lowest contact resistances of 0.4 Ω mm (6×10−6 cm2). In addition, the WSi-based contacts with a small amount of Au showed good thermal stability at 400 °C after contact formation. Microstructural analysis of the WSi contacts with Au showed formation of β-AuGa and WSi2 compounds, which indicates that the Ohmic behavior would be due to heavy doping of Si at the GaAs surface induced by Ga out-diffusion. The mechanism of Ohmic contact formation of the present contacts agreed very well with that of the NiGe-based Ohmic contacts.  相似文献   

11.
热处理温度对铁电薄膜底电极Pt和Pt/Ti物相与形貌的影响   总被引:7,自引:1,他引:6  
随着热处理温度上升,在SiO2/Si衬底上溅射的Pt、Pt/Ti电极中,构成Pt薄膜的晶粒由小变大,由分布均匀到晶粒局部聚集,最后分离成小岛。Ti层可提高Pt薄膜与基片间的粘附性和高温下的稳定性。快速热处理可提高Pt薄膜在高温下的连续性。并研究了Pt薄膜对PLT铁电薄膜的成品率和分散性的影响。  相似文献   

12.
Au and Ti/Au layers were deposited on n-GaN. The samples were annealed at 400, 700 and 900 °C for 10 min in vacuum. The contacts were rectifying up to 700 °C and the highest Schottky barrier height of 1.07 eV was obtained for an Au single layer by current-voltage measurements. A binary phase of Au2Ga was identified at the interface of the n-GaN/Ti/Au contact after annealing at 900 °C. The formation of Ti2N and TiN (twin) phases epitaxially grown on GaN was also observed in the same contact as well as some gold diffusion into the topmost region of the GaN epilayer.  相似文献   

13.
Pt-PtOx thin films were prepared on Si(100) substrates at temperatures from 30 to 700°C by reactive r.f. magnetron sputtering with platinum target. Deposition atmosphere was varied with O2/Ar flow ratio. The deposited films were characterized by X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy. Resistively of the deposited films was measured by d.c. four probe method. The films mainly consisted of amorphous PtO and Pt3O4 (or Pt2O3) below 400°C, and amorphous Pt was increased in the film as a deposition temperature increased to 600°C. When deposition temperature was thoroughly increased, (111) oriented pure Pt films were formed at 700°C. Compounds included in the films strongly depended on substrate temperature rather than O2/Ar flow ratio. Electrical resistivity of Pt-PtOx films was measured to be from the order of 10−1 Ω cm to 10−5 Ω cm, which was related to the amount of Pt phase included in the deposited films.  相似文献   

14.
CaCu3Ti4O12 (CCTO) thin films were successfully deposited on Pt/Ti/SiO2/Si(1 0 0) substrates using pulsed-laser deposition technique. The crystalline structure and the surface morphology of the CCTO thin films were greatly affected by the substrate temperature and oxygen pressure. Thin films with a (2 2 0) preferential orientation were obtained at the substrate temperature above 700 °C and oxygen pressure above 13.3 Pa. The 480-nm thin films deposited under 720 °C and 26.6 Pa have a fairly high dielectric constant of near 2000 at 10 kHz and room temperature. The values of the dielectric constant and loss and their temperature-dependence under different frequency are comparable with those obtained in the epitaxial CCTO films grown on oxide substrates.  相似文献   

15.
T. Jang  J.S. Kwak  K.K. Choi  Y. Park 《Thin solid films》2008,516(6):1093-1096
The thermal stabilities of Ti/Pt/Au, W/Au and Cu bonding layers on GaN blue laser diode were investigated by measuring the series resistances with respect to annealing temperatures from 250 °C to 500 °C and possible degradation mechanisms were suggested by Transmission Electron Microscopy and Energy Dispersive Spectroscopy analyses. The laser diode with Ti/Pt/Au bonding layer degraded after annealing at 250 °C but the laser diode with Cu and W/Au bonding layer showed good thermal stability up to 400 °C and 450 °C, respectively. Cu and W/Au layers are believed to improve the integrities of the ohmic contact and bonding layers and this would enhance the thermal stability of bonding layers. Therefore robust GaN blue laser diodes that have wide operation windows and long-term reliability would be obtained.  相似文献   

16.
Bi1.5Zn0.5Nb0.5Ti1.5O7 (BZNT) thin films with different thicknesses as cover layers were deposited on the Ba0.6Sr0.4TiO3 (BST) thin films on the Pt/Ti/SiO2/Si substrates by radio frequency magnetron sputtering method. The microstructure, surface morphology, dielectric and tunable properties of BST/BZNT heterogeneous bilayered films were investigated as a function of the thickness of BZNT films and the effect of BZNT films on the asymmetric electrical properties of BST/BZNT bilayered films was discussed. It was found that BZNT cover layer significantly improved the leakage current and the dielectric loss, and the dielectric constant and tunability of BST/BZNT bilayered thin films simultaneously decreased with the increasing thickness of BZNT films. The BST/BZNT bilayered thin film with a 50 nm BZNT cover layer gave the largest figure of merit (FOM) of 33.48 with the upper tunability of 55.38%. The asymmetric electrical behavior of BST/BZNT bilayered films is probably related to an internal electric field caused by built-in voltages at Pt/BST and BZNT/Au interfaces.  相似文献   

17.
This article reports the optical and morphological properties of dip-coated TiO2 and ZrO2 thin films on soda-lime glass substrates by metal-organic decomposition (MOD) of titaniumIV and zirconiumIV acetylacetonates respectively. Thermogravimetric and differential thermal analysis (DTA–TG) were performed on the precursor powders, indicating pure TiO2 anatase and tetragonal ZrO2 phase formation. Phase crystallization processes took place in the range of 300–500 °C for anatase and of 410–500 °C for ZrO2. Fourier Transform Infrared Spectroscopy (FT-IR) was used to confirm precursor bidentate ligand formation with keno-enolic equilibrium character. Deposited films were heated at different temperatures, and their structural, optical and morphological properties were studied by grazing-incidence X-ray Diffraction (GIXRD) and X-Ray Photoelectron Spectroscopy (XPS), Ultraviolet Visible Spectroscopy (UV-Vis), and Atomic Force Microscopy (AFM) respectively. Film thinning and crystalline phase formation were enhanced with increasing temperature upon chelate decomposition. The optimum annealing temperature for both pure anatase TiO2 and tetragonal ZrO2 thin films was found to be 500 °C since solid volume fraction increased with temperature and film refractive index values approached those of pure anatase and tetragonal zirconia. Conditions for clean stoichiometric film formation with an average roughness value of 2 nm are discussed in terms of material binding energies indicated by XPS analyses, refractive index and solid volume fraction obtained indirectly by UV-Vis spectra, and crystalline peak identification provided by GIXRD.  相似文献   

18.
T.S. Abhilash 《Thin solid films》2010,518(19):5576-5578
Magnetic properties of alloyed Ohmic contacts of the type AuGe/Ni/Au on GaAs/AlGaAs multilayers with n+ cap layer with different AuGe compositions and Ni-layer thicknesses are examined. Magnetization data indicate that the annealed structures are non-magnetic, at room temperature for commonly used anneal temperatures (∼ 400-430 °C) and Ni-layer thicknesses (10-100 nm). The transformation of Ni to non-magnetic phase begins at ∼ 100 °C, well below temperatures at which extensive alloying with the GaAs substrate takes place. The fraction of Ni transformed to non-magnetic phase on annealing appears to scale with AuGe layer thickness, has a quadratic dependence on anneal temperature and is time independent for time scales of minutes. The data indicate that the Ni layer dissolves into the AuGe layer at temperatures well below that at which alloying between AuGe and GaAs substrate takes place. The dissolved Ni concentration is limited by a solubility that increases with anneal temperature and decreases with decreasing Ge content from that of the AuGe eutectic composition.  相似文献   

19.
The performance of the contacts, where Au/Ti layers are used in the metallization scheme, largely depends on the product phases grown by interdiffusion at the interface. It is found that four intermetallic compounds grow with narrow homogeneity range and wavy interfaces in the interdiffusion zone. The presence of wavy interfaces is the indication of high anisotropy in diffusion of the product phases. This also reflects in the deviation of parabolic growth from the average. Further, we have determined the relevant diffusion parameters, such as interdiffusion coefficient in the penetrated region of the end members and integrated diffusion coefficients of the intermetallic compounds.  相似文献   

20.
Improved Al/Si ohmic contacts to p-type 4H-SiC   总被引:1,自引:0,他引:1  
An AlSi-based ohmic contact with a new composition is reported in this paper. AlSi(2%)Ti(0.15%) contacts are formed by evaporation on p-type 4H-SiC grown by liquid phase epitaxy (LPE) and annealed in the temperature range from 700 to 950°C. The ohmic behaviour has been checked by I–V characteristics and the contact resistivity has been measured by the linear transmission-line-model (TLM) method. The dependence of the contact resistivity on the annealing conditions has been studied. An ohmic behaviour has been established at 700°C while the lowest contact resistivity value of 9.6×10−5 Ω cm2 has been obtained after annealing at 950°C. The thermal stability of both Al/Si/SiC and AlSiTi/SiC contacts at a temperature of 600°C has been studied. It has been found that the AlSiTi/SiC contacts are stable for 100 h at this ageing temperature while the Al/Si/SiC contacts deteriorate after 24 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号