首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The role of the dopamine D3 receptor subtype in the central nervous system is still not well understood. It has a distinct and restricted distribution, mostly associated with limbic territories of the striatum (olfactory tubercle and the shell of nucleus accumbens) in rat brain. Dopaminergic denervation induced by a 6-hydroxydopamine lesion of the nigrostriatal system in rat down-regulates the expression of the D3 receptor. In the present study, we investigated the functional neuroanatomy of the dopamine D3 receptor subtype in the monkey (Macaca fascicularis) basal ganglia. We also studied the effect of administration of the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and chronic D1-like (SKF 82958) or D2-like (cabergoline) agonist treatments on dopamine D3 receptor levels using receptor autoradiography. Our results clearly show that the distribution of D3 receptors in the monkey is more closely related to associative and limbic components of the striatum (caudate-putamen), as compared with its sensorimotor counterpart. Hence, D3 receptors may be more specifically involved in cognitive and motivational aspects of striatal functions, which are elaborated in prefrontal, temporal, parietal, cingulate and limbic cortices. Moreover, MPTP administration significantly decreased levels of D3 receptors and this effect was reversed or compensated by a chronic treatment with a D1-like, but not a D2-like, receptor agonist. The D3 receptor may represent an important target for adjunct or direct therapy designed to improve cognitive deficits observed in patients with Parkinson's disease, schizophrenia and other illnesses with frontal lobe cognitive disturbances.  相似文献   

3.
Aging differentially affects receptor function. In the present electrophysiological study we compared neuronal responsiveness to locally applied dopamine D1 and D2 receptor agonist in the striatum of female Fischer 344 rats aged 3 and 26-27 months. In a subgroup of the old rats, the nigrostriatal dopamine bundle was destroyed unilaterally with 6-hydroxydopamine (6-OHDA) to assess receptor plasticity in response to denervation. Spontaneous firing rate of striatal neurons was higher in aged compared to young rats. Higher doses of the D1 agonist SKF 38393 or the D2 agonist quinpirole were required to elicit a 50% change in firing rate in aged compared to young rats. No difference with SKF 38393 or quinpirole was detected between 6-OHDA denervated and control (nonlesioned) striatum in aged rats. Supersensitivity to D2 agonists has been reported following 6-OHDA lesions in young rats. These observations suggest that D2 receptors in aged rat striatum might not be as plastic as in younger rats.  相似文献   

4.
In vivo microdialysis was used to examine the effects of dopaminergic transplants on extracellular concentrations of dopamine (DA), serotonin (5-HT), and their precursors and major metabolites in the denervated rat striatum. Dialysis perfusates were collected from intact 6-hydroxydopamine (6-OHDA) lesion plus sham grafted, and lesion plus fetal substantia nigra (SN) grafted striata. The SN transplants ameliorated the reduction of striatal DA and dihydroxyphenylacetic acid (DOPAC) levels in rats with unilateral 6-OHDA lesions of the mesostriatal pathway. The transplants also increased extracellular levels of 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) in the denervated striatum. In response to NSD-1015 (an inhibitor of aromatic L-amino acid decarboxylase, AADC), 5-hydroxytryptophan (5-HTP) levels were substantially elevated in the SN grafted striata as compared with those in the sham grafted controls, which continued even after subsequent administration of L-3,4-dihydroxyphenylalanine (L-DOPA, 100 mg/kg i.p.). Immunohistochemical analysis showed hyperinnervation of 5-HT fibers in the grafted striatum, which was consistent with the results of microdialysis experiments. These results indicated that implantation of SN grafts into the 6-OHDA-lesioned striatum of rats induces hyperactivity of 5-HT synthesis, release and metabolism.  相似文献   

5.
Young mice challenged with the neurotoxin 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine (MPTP), which selectively destroys the substantia nigra dopaminergic neurons in the midbrain, exhibit spontaneous recovery of dopaminergic nerve terminals. However, such recovery becomes attenuated with age. Here we report that newly sprouted fibers originate from spared dopaminergic neurons in the ventral tegmental area. We found that interleukin-1 (IL-1), an immune response-generated cytokine that can enhance dopaminergic sprouting when exogenously applied, increased dramatically in the denervated striatum of young mice (2 months) compared with middle-aged mice (8 months) after MPTP treatment. Young mice displayed a maximal 500% induction of IL-1alpha synthesis that remained elevated for several weeks in the dorsal and ventral striatum, whereas middle-aged mice exhibited a modest 135% induction exclusively in the dorsal striatum for a week. IL-1alpha immunoreactivity was localized in GFAP-immunoreactive hypertrophied astrocytes and neurons within the denervated striatum of young mice. However, no induction of IL-1alpha mRNA was seen in the midbrain in either age group despite glial activation. Because we have reported that IL-1 can regulate astroglia-derived dopaminergic neurotrophic factors, it was surprising that no changes were observed in acidic and basic fibroblast growth factor or glial cell line-derived neurotrophic factor mRNA levels associated with MPTP-induced plasticity of dopaminergic neurons in the striatum of young mice. Interestingly, we found that dopaminergic neurons express IL-1 receptors, thus suggesting that IL-1alpha could directly act as a target-derived dopaminergic neurotrophic factor to initiate or enhance the sprouting of dopaminergic axonal terminals. These findings strongly suggest that IL-1alpha could play an important role in MPTP-induced plasticity of dopaminergic neurons.  相似文献   

6.
7.
Activation of the nigrostriatal dopaminergic system by psychostimulants such as amphetamine increases c-Fos expression in the striatum, mostly in the striatonigral substance P-ergic pathway. This effect is greatly reduced in the neostriatum deprived of dopaminergic afferents. Dopaminergic grafts implanted into the denervated neostriatum restore the reactivity of the striatum to amphetamine. However, the number of striatal neurons expressing c-Fos is greatly increased in the graft-bearing striatum compared with the normal striatum. We examined whether this increase in the number of c-Fos-expressing neurons corresponds to the recruitment of a new neuron population, or whether it reflects an increase in the proportion of substance P-ergic neurons exhibiting activation of c-Fos. Adult rats received a unilateral 6-hydroxydopamine lesion of the ascending dopaminergic mesotelencephalic pathway, and a suspension of embryonic mesencephalic neurons was subsequently implanted into the denervated neostriatum. Three months after implantation, animals were injected with d-amphetamine (5 mg/kg) and killed 2 h later. In the first experiment, striatal sections were processed to visualize both c-Fos protein, by immunohistochemistry, and preproenkephalin A or substance P, by in situ hybridization. In the second experiment, c-Fos and neuropeptide Y were visualized on the same sections. In addition, some sections incubated with anti-c-Fos antibody were counterstained with toluidine blue in order to determine whether cholinergic neurons were expressing c-Fos following amphetamine treatment. The density of neurons expressing c-Fos following amphetamine treatment was three-fold higher in the graft-bearing striata than in the striata of control animals. Approximately 75% of the c-Fos expressing cells were substance P-ergic in control animals whereas 6% were enkephalinergic and only a few were neuropeptide Y-ergic or cholinergic. Similar proportions were found in the graft-bearing striatum, signifying that the pattern of activation of c-fos following amphetamine administration is not changed by the graft. Thus, the increased expression of c-Fos predominantly reflects a graft-induced increase in the proportion of neurons expressing c-Fos within the same population of neurons which normally expresses c-Fos in the striatum, i.e. the striatonigral substance P-ergic neurons; there is no recruitment of a new neuronal population. This increased activation of the striatonigral substance P-ergic pathway may underlie the abnormal behavioural reactions brought about by amphetamine-induced stimulation of the implanted dopaminergic neurons.  相似文献   

8.
The expression of c-Fos-like immunoreactivity (FLI) and chronic Fos-related antigen-like immunoreactivity (FRALI) accompanying behavioral sensitization to amphetamine was assessed in male rat striatum. Animals were treated for four days with amphetamine (A; 5 mg/kg) or vehicle (V) and challenged with A or V on the fifth day. The number of FLI-positive cells in the striatum was enhanced in V-A and A-A groups as compared to control (V-V), while the number of FRALI-positive cells in the striatum was enhanced in the A-V and A-A groups as compared to control. These results suggest that the absence of a decrease in the number of striatal FLI-positive cells accompanying chronic amphetamine treatment is not due to antibody cross-reactivity with chronic FRAs, and that behavioral sensitization to amphetamine is not accompanied by a change in the number of striatal cells expressing c-Fos.  相似文献   

9.
In these experiments, induction of the immediate early gene c-fos following excitation of striatal neurons has been used to investigate the organization of the ventral and dorsal striatopallidal systems and the relationship between striatal neurons and cholinergic neurons of the nucleus basalis magnocellularis (of Meynert, nbM). The results demonstrate that FOS immunoreactivity (ir) can be detected in ventral and dorsal striatal neurons following infusions of the non-N-methyl-D-aspartic acid (NMDA) glutamate receptor agonist alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA). This activation and increased expression of FOS in striatal neurons was itself associated with the sustained appearance of FOS-ir in neurons of the ipsilateral ventral and dorsal pallidum, subthalamic nucleus and some thalamic nuclei. Infusions of AMPA into the ventral striatum (VS), but not the dorsal striatum (DS), also resulted in the appearance of FOS-ir in a proportion (17%) of the cholinergic neurons of the nbM. By combining the retrograde transport of Fluoro-Gold with FOS immunocytochemistry, it was also possible to demonstrate that approximately 46% and 58% of the pallidal neurons containing FOS-ir after infusions of AMPA into the VS or DS, respectively, directly project to the subthalamic nucleus. Taken together, these observations suggest that visualizing the protein product of transsynaptic c-fos induction provides an effective way to study the topographic and transsynaptic, within-system consequences of striatal activation.  相似文献   

10.
11.
Two-color immunofluorescence histochemistry and immunohistochemistry in combination with retrograde tract-tracing techniques were used to examine the relationship of alpha-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid (AMPA)-selective glutamate receptor subunits (GluR1, GluR2/3/4c and GluR4) to identified populations of striatal projection neurons and interneurons. The majority of striatonigral and striatopallidal neurons were double-labeled for GluR2/3/4c. These findings were confirmed using calbindin to label matrix projection neurons. In contrast, immunostaining of the GluR1 subunit was not observed to co-localize with any striatal projection neurons. Striatal interneurons immunostained for parvalbumin were also labeled by antibodies directed against the GluR1 subunit. Approximately 50% of parvalbumin neurons also contained GluR2/3/4c. Somatostatin immunoreactivity did not co-localize with either the GluR1 or GluR2/3/4c subunits. GluR4-immunoreactive neurons were not observed in striatum. This study demonstrates that AMPA-selective glutamate receptors are differentially localized on subpopulations of striatal neurons and interneurons. These findings suggest that discrete striatal neuron populations may express different AMPA receptor subunit combinations which may account for their functional specificity.  相似文献   

12.
This study was designed to validate an in vivo measurement of the functional sensitivity of basal ganglia neuronal circuits containing dopamine D2 receptors. We hypothesized that a D2 agonist would decrease striatopallidal neuronal activity, and hence regional cerebral blood flow (rCBF) over the axon terminals in the globus pallidus. Quantitative pallidal blood flow was measured using positron emission tomography (PET) with bolus injections of H215O and arterial sampling in six baboons before and after intravenous administration of the selective D2 agonist U91356a. We also tested whether the response to U91356a was modified by previous acute administration of various antagonists. Another baboon had serial measurements of blood flow under identical conditions, but received no dopaminergic drugs. In all animals that received U91356a, pallidal flow decreased in a dose-related manner. Global CBF had a similar response, but the decline in pallidal flow was greater in magnitude and remained significant after accounting for the global effect. A D2 antagonist, but not antagonists of D1, serotonin-2, or peripheral D2 receptors, prevented this decrease. This work demonstrates and validates an in vivo measure of the sensitivity of D2-mediated basal ganglia pathways. It also supports the hypothesis that activation of the indirect striatopallidal pathway, previously demonstrated using nonselective D2-like agonists, can be mediated specifically by D2 receptors. We speculate that the U91356a-PET technique may prove useful in detecting functional abnormalities of D2-mediated dopaminergic function in diseases such as parkinsonism, dystonia, Tourette syndrome, or schizophrenia.  相似文献   

13.
To gain insight into the role of striatal dopamine in basal ganglia functioning, dopaminergic drugs alone and in combination with the glutamate receptor agonist kainic acid were infused in the lateral striatum via a microdialysis probe, while single-unit recordings of substantia nigra reticulata neurons were made in chloral hydrate-anaesthetized rats. Striatal infusion of dopaminergic drugs did not significantly affect the firing rate of substantia nigra reticulata neurons, which was related to the low activity of striatal cells under basal conditions, illustrated by the lack of effect of striatal infusion of TTX on substantia nigra reticulata activity. Under glutamate-stimulated conditions, striatal infusion of d-amphetamine potentiated the inhibition of substantia nigra reticulata neurons induced by striatal kainic acid. Thus, under stimulated but not basal conditions, the modulatory role of dopamine in the striatum could be demonstrated. Dopamine potentiated the inhibitory effect of striatal kainic acid on the firing rate of the basal ganglia output neurons.  相似文献   

14.
This study examined the effects of different levels of acetylcholinesterase (AChE) inhibition on dopaminergic regulation of striatal acetylcholine (ACh) release as estimated by in vivo brain microdialysis. Systemic administration of d-amphetamine (2 or 10 mg/kg) increased the striatal output of ACh when the AChE inhibitor neostigmine (0.1 microM) was present in the perfusion fluid. In contrast, when the same experiments were conducted at 0.01 microM neostigmine, d-amphetamine failed to affect (2 mg/kg) or significantly decreased (10 mg/kg) striatal ACh output. The inhibitory action of the D2 receptor agonist quinpirole (0.2 mg/kg) was significantly greater at 0.01 microM than at 0.1 microM neostigmine. Similarly, there was a nonsignificant trend for the D2 antagonist raclopride (1 mg/kg) to stimulate ACh release to a greater extent at the low neostigmine concentration. In contrast, the stimulant effects of systemic administration of the D1 agonist A-77636 (1.46 mg/kg) on striatal ACh release were the same at the two neostigmine concentrations. These results demonstrate that the concentration of an AChE inhibitor in the perfusion solution can quantitatively and even qualitatively influence the manner in which dopaminergic agents regulate ACh overflow in the striatum. On comparing the present results with earlier reports concerning the effects of d-amphetamine on tissue concentrations of ACh, it is tentatively concluded that a low neostigmine concentration is the more physiologically relevant condition. Under such conditions, at moderate doses d-amphetamine does not appear to alter striatal ACh release, with this likely being due to the opposing actions of D1 and D2 receptors. Nevertheless, until the endogenous interstitial concentrations of striatal ACh can be measured by other methods, the physiological relevance of ACh microdialysis studies in the striatum will remain uncertain.  相似文献   

15.
The neostriatum is one of the areas with relatively high levels of glial cell line-derived neurotrophic factor (GDNF) messenger RNA expression in the developing and adult brain. GDNF expression in the neostriatum has been suggested to be involved in promoting the survival of nigral dopaminergic neurons, acting as a target-derived neurotrophic factor. However, GDNF messenger RNA expression in the striatum starts several days before dopaminergic and other afferent neurons reach the striatum, suggesting additional trophic effects of this factor on striatal neurons. In the present report, we have examined whether GDNF is able to prevent the degeneration of striatal calbindin- and parvalbumin-immunoreactive neurons in a lesion model of Huntington's disease. Fischer 344 rat 3T3 fibroblast cell line expressing high levels of GDNF (F3A-GDNF) was used to assess the protective effect of this factor, on striatal neurons, against excitotoxicity. Quinolinate (34 nmol) was injected at two different coordinates, and calbindin, parvalbumin and tyrosine hydroxylase immunoreactivity were examined seven days after lesion. Dopaminergic afferents were spared after quinolinate injection, but the number of calbindin- and parvalbumin-immunoreactive neurons was decreased. Interestingly, implantation of F3A-GDNF cells increased the density of tyrosine hydroxylase staining in the intact and also in the quinolinate-lesioned striatum. Furthermore, GDNF partially protected calbindin- but not parvalbumin-immunoreactive neurons from quinolinate excitotoxicity. Instead, mock-transfected fibroblasts did not affect any of these parameters. Our results show that GDNF specifically protects a subpopulation of striatal calbindin-immunoreactive neurons against quinolinate lesion, suggesting that GDNF administration may have a potential therapeutic application in the prevention and treatment of striatonigral degenerative disorders.  相似文献   

16.
1. The presence of dye coupling between striatal neurons was investigated using in vivo intracellular recording and dye injection in adult rats. In 17% of the cases in which a single striatal neuron was injected with Lucifer yellow, more than one labeled neuron was recovered. In control rats, this dye coupling was observed only between single pairs of medium spiny neurons and only when the neuron injected exhibited the Type II response profile as defined by paired-pulse stimulation of corticostriatal afferents. 2. After intravenous administration of the D1/D2 agonist apomorphine at a behaviorally effective dose (i.e., 0.1-0.3 mg/kg), an increase in the incidence (from 17% to 82% of injected cells) and extent (from 2 cells to 3-7 cells labeled per injection) of dye coupling was observed. This effect was mediated by D2 receptor stimulation because administration of the D2 agonist quinpirole caused similar alterations in the incidence and extent of dye coupling (66% coupled). In contrast, administration of the D1 agonist SKF 38393 or the D1 antagonist SCH 23390 did not result in any significant alteration in dye coupling. 3. In control rats, the entire somatodendritic regions of dye-coupled neurons were found to be localized within single matrix compartments of the striatum. However, after intravenous administration of apomorphine or quinpirole, clusters of dye-coupled neurons were found to extend across the patch/matrix boundary. Moreover, dye coupling was observed after injecting cells exhibiting either the Type I or the Type II response profile. 4. In response to D2 receptor stimulation, both the extent and the pattern of coupling between striatal neurons is altered, resulting in direct coupling between neurons that are otherwise functionally and anatomically segregated in the control animal.  相似文献   

17.
To characterize how systemic morphine induces Fos protein in dorsomedial striatum and nucleus accumbens (NAc), we examined the role of receptors in striatum, substantia nigra (SN), and ventral tegmental area (VTA). Morphine injected into medial SN or into VTA of awake rats induced Fos in neurons in ipsilateral dorsomedial striatum and NAc. Morphine injected into lateral SN induced Fos in dorsolateral striatum and globus pallidus. The morphine infusions produced contralateral turning that was most prominent after lateral SN injections. Intranigral injections of [D-Ala2, N-Me-Phe4, Gly-ol5]-enkephalin (DAMGO), a mu opioid receptor agonist, and of bicuculline, a GABAA receptor antagonist, induced Fos in ipsilateral striatum. Fos induction in dorsomedial striatum produced by systemic administration of morphine was blocked by (1) SN and VTA injections of the mu1 opioid antagonist naloxonazine and (2) striatal injections of either MK 801, an NMDA glutamate receptor antagonist, or SCH 23390, a D1 dopamine receptor antagonist. Fos induction in dorsomedial striatum and NAc after systemic administration of morphine seems to be mediated by dopamine neurons in medial SN and VTA that project to medial striatum and NAc, respectively. Systemic morphine is proposed to act on mu opioid receptors located on GABAergic interneurons in medial SN and VTA. Inhibition of these GABA interneurons disinhibits medial SN and VTA dopamine neurons, producing dopamine release in medial striatum and NAc. This activates D1 dopamine receptors and coupled with the coactivation of NMDA receptors possibly from cortical glutamate input induces Fos in striatal and NAc neurons. The modulation of target gene expression by Fos could influence addictive behavioral responses to opiates.  相似文献   

18.
D1- and D2-dopamine receptor-mediated regulation of immediate early gene levels in identified populations of neurons in the striatum was examined with quantitative in situ hybridization histochemical techniques. Levels of messenger RNA (mRNA) encoding the immediate early genes zif268 and c-fos were examined in two experiments in rats with unilateral lesions of the nigrostriatal dopamine pathway. In a dose-response study, animals were treated with doses of 0.5, 1.0, and 1.5 mg/kg of the D1 agonist SKF-38393 either alone or in combination with the D2 agonist quinpirole (1 mg/kg). Levels of immediate early gene mRNAs 60 min following drug treatments showed a dose-related increase to the D1 agonist alone and a potentiation to combined D1 and D2 against treatment. In a second experiment, in animals receiving 1 mg/kg SKF-38393 either alone or in combination with 1 mg/kg quinpirole, the level of zif268 mRNA was measured with a double-labeling method in striatal neurons containing enkephalin mRNA, a marker of D2-containing neurons, and in neurons not containing enkephalin, putative D1-containing neurons. In the dopamine-depleted striatum, D1 agonist treatment alone did not affect enkephalin-positive neurons but significantly elevated zif268 mRNA levels in nearly all enkephalin-negative neurons. Combined D1 and D2 agonist treatment further increased zif268 mRNA levels in this population of enkephalin-negative neurons and decreased zif-268 mRNA levels in enkephalin-positive neurons. These data indicate that the synergistic response to combined D1- and D2-receptor stimulation is mediated by interneuronal interactions involving the activation of D1 and D2 receptors on separate populations of striatal neurons.  相似文献   

19.
We have studied the effects of the neuroleptic haloperidol and the non-benzodiazepine anxiolytics buspirone and lesopitron on the expression of c-Fos immunoreactivity in the rat forebrain. Haloperidol and buspirone administration resulted in a significant quantitative increase in the number of Fos-immunoreactive neurons in the lateral striatum and a presumable qualitative increase in the nucleus accumbens. In contrast, lesopitron did not lead to a significant increase in the c-Fos expression in the striatum. The induction of c-Fos immunoreactivity by buspirone is compatible with an interaction of this compound with D2 dopamine receptors, as documented for haloperidol. The lack of effects after lesopitron administration suggests that, in contrast with buspirone, this compound has no dopaminergic blocking activity.  相似文献   

20.
Interleukin-1 beta (IL-1 beta) can induce dopaminergic axonal sprouting in the denervated striatum of parkinsonian animals. In order to determine whether IL-1 beta effects on dopaminergic axonal sprouting are mediated by the induction of astroglial-derived dopaminergic neurotrophic factors, effects of IL-1 beta treatment on acidic and basic fibroblast growth factor (aFGF and bFGF) and glial cell line-derived growth factor (GDNF) gene expression were examined in primary striatal astrocyte cultures and after in vivo administration. We found a selective induction of bFGF mRNA synthesis but not aFGF or GDNF mRNA after IL-1 beta treatment both in vitro and in vivo. This suggests that bFGF may be the putative endogenous dopaminergic neurotrophic factor mediating lesion-induced plasticity of dopamine neurons. In addition, to determine why recovery from injury becomes reduced with age, we examined whether there was an aging-associated decline in the ability of IL-1 beta to induce the synthesis of neurotrophic factors in middle-aged animals compared to young mice. Interestingly, IL-1 beta stimulated a greater induction in bFGF mRNA levels in the middle-aged mice compared to young mice. These results suggest that the regulation of bFGF and possibly its receptor signaling efficacy may vary as the brain ages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号