首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The high-temperature thermodynamic behavior of the Cr-Cr2N-N2 system has been investigated in the temperature range 1450 to 1850 K by measuring the equilibrium pressure of nitrogen gas over pure chromium metal and chromium nitride Cr2N. From the experimental data, the standard free energy and enthalpy of formation of Cr2N have been determined to be: ΔH° = −104. ± 10 (KJ. mol−1 Cr2N) ΔG° = −104. + 0.04987 ± 3.8 (KJ. mol−1 Cr2N)  相似文献   

2.
The standard enthalpies of formation of TiSi2 and VSi2 have been measured by a new calorimetric method. The following results are reported: ΔH f ° (TiSi2) = −(170.9 ± 8.3) kJ mol−1 and ΔH {f °} (VSi2) = −(112.4 ± 6.0) kJ mol−1. These results are compared with experimental, assessed, and predicted values reported in the literature and with our own data for the corresponding borides. Estimates are given for the enthalpies of formation of the silicides of scandium and chromium.  相似文献   

3.
Adiabatic oxygen combustion calorimetry has been used to determine the enthalpies of combustion of the chromium carbides Cr23C6, Cr7C3 and Cr3C2 to be—15,057.6±12.4 kJ ·mole−1,—4985.3±3.8 kJ ·mole−1 and—2400.5±0.9 kJ ·mole−1 respectively. The products of combustion in all cases were Cr2O3 and CO2. Using standard data for Cr2O3 and CO2, the enthalpies of formation of the carbides have been calculated to be:fΔH 298 o Cr23C6=−290.0±27.6 kJ·mole−1 fΔH 298 o Cr7C3=−149.2±8.5 kJ·mole−1 fΔH 298 o Cr3C2=−81.1±2.9 kJ·mole−1  相似文献   

4.
The enthalpies of formation of the intermetallic compounds PdZr and PdHf have been determined by high temperature mixing calorimetry at 1400 K. The following results are reported: PdZr: ΔH° f = −122.6 ± 7.0 kJ mol−1; PdHf: ΔH° f = −134.8 ± 7.8 kJ mol−1. Our results are compared with estimated and predicted literature values and with approximate experimental values recently obtained by direct high temperature reaction calorimetry. The enthalpies of formation of the equiatomic alloys of the Ti-group metals with Pd show increasing negative values in the series TiPd < ZrPd < HfPd.  相似文献   

5.
In order to obtain the activities of chromium in molten copper at dilute concentrations (<0.008 chromium mole fractions), liquid copper was brought to equilibrium with molten CaCl2 + Cr2O3 slag saturated with Cr2O3 (s), at temperatures between 1423 and 1573 K, and the equilibrium oxygen partial pressures were measured by means of solid-oxide galvanic cells of the type Mo/Mo + MoO2/ZrO2(MgO)/(Cu + Cr))alloy + Cr2O3 + (CaCl2 + Cr2O3)slag/Mo. The free energy changes for the dissolution of solid chromium in molten copper at infinite dilution referred to 1 wt pct were determined as Cr (s) = Cr(1 wt pct, in Cu) and ΔG° = + 97,000 + 73.3(T/K) ± 2,000 J mol−1.  相似文献   

6.
The effect of chromium on the activity coefficient of sulfur in the ternary system Fe−Cr−S has been determined in the temperature range 1525° to 1755°C for chromium concentrations of up to 40 wt pct, using a levitation melting technique in H2−H2S atmospheres. The first order free energy interaction coefficient,e S Cr , which is derived on the assumption that the thermal diffusion error is constant for both binary Fe−S and ternary Fe−Cr−S melts under controlled levitation conditions, is given by the relationship:e S Cr =−94.2/T+0.040 The first order enthalpy and entropy interaction coefficients are found to beh S Cr =−430±70 ands S Cr =−0.183±0.007 respectively. These results are in good agreement with recently published data.  相似文献   

7.
The standard free energies of formation of Cr7C3 and Cr3C2 have been obtained from emf measurements on the following galvanic cells with BaF2-BaC2 solid solutions as the electrolyte: Cr,Cr23C6∣BaF-BaC2∣Cr23C6,Cr7C3 (920 to 1250 K) (A) Cr23C6, Cr7C3 ∣BaF2-BaC2∣W, WC (900 to 1200 K) (B) WC, W∣BaF2-BaC2∣Cr3C2, Cr7C3 (973 to 1173 K) (C) Combining the results of this study with a previous work15 and those of Kulkarniet al. and Dawsonet al., the following equations for ΔG f of Cr7C3 and Cr3C2 have been determined: from cell (A): ΔG Cr7C3 o (±2300) = −155410(±173) − 35.8(±0.1)T joules; from cell (B): ΔG Cr7C3 o (±2000) = −155585(±385) − 35.8(±0.4)T joules for the reaction 7Cr + 3C = Cr7C3; from cell (C): ΔG Cr3C2 o , (±1200) = −92860(±210) − 19.4(±0.2)T joules for the reaction 3Cr + 2C = Cr3C2.  相似文献   

8.
The pressures of carbon monoxide in equilibrium with a Cr23C6-Cr2O3-Cr mixture and with a Cr7C3-Cr2O3-Cr23C6 mixture have been measured in the temperature range 1100 to 1300 K using the torsion-effusion technique. From the equilibrium data, the following equation for ΔGof of Cr23C6 (in cal per mole) has been calculated: ΔG f ° (±1200) = −77,000 - 18.3T (1150 to 1300 K) Combining the results of this study at temperatures between 1100 and 1300 K with those of Kelleyet al., 3 at temperatures between 1500 and 1720 K, the following equation for ΔGof of Cr7C3 (in cal per mole) has been determined: ΔG f ° (±400) = −35,200 - 8.7T (1100 to 1720 K) ) The above equation for ΔGof of Cr7C3 has been used to re-evaluate the equilibrium data of Kelleyet al., 3 and the following equation for ΔGof of Cr3C2 (in cal per mole) has been obtained: ΔG f ° (±400) = −16,400 - 4.4T (1300 to 1500 K) CHROMIUM reacts with carbon to form three carbides:1,2 Cr23C6, Cr7C3, and Cr3C2. The chromium carbides are of considerable technical importance because of their precipitation behavior in certain high-chromium steels and superalloys. A precise knowledge of their thermodynamic properties is essential for the understanding and the prediction of their chemical behavior in various environments. This paper is based upon a thesis submitted by A. D. KULKARNI in partial fulfillment of the requirements of the degree of Doctor of Philosophy at the University of Pennsylvania.  相似文献   

9.
Binary and ternary alloys of chromium and iron with nickel were studied. The total solute content ranged from 1 to 10 at. pct. The first-order interaction coefficients for chromium are εCr (Cr)= 1.8 ±2.0, and εCr (Fe) = 0.6 ± 5.0 (twice standard deviation). The relative partial molar enthalpy of liquid chromium in nickel at 1550° and at 5 pct chromium is −2200 cal per g-atom. An unusual result was obtained for iron in the form of a minimum in the experimental ln(IFe N Ni/INi N Fe)-curve. Formerly Postdoctoral Fellow, Department of Metallurgical Engineering, Ohio State University, Columbus, Ohio. Formerly N. S. F. Trainee at Ohio State University.  相似文献   

10.
Measurements have been made on the thermal capacity of γ-Gd2Se3 at 58.88–298.34 K. Values have been obtained for the thermal capacity, entropy, reduced Gibbs energy, and enthalpy under standard conditions: C°p = 125.87 ± 0.5 J· mole−1 · K−1; S°(298.15 K) = 196.5 · 1.6 J · mole−1 · K−1; Φ°(298.15 K) = 103.6 ± 1.6 J · mole−1 · K−1; H°(298.15 K)-H°(0) = 27681 ± 138 J · mole−1. The enthalpy of Gd2Se3 has been measured and the major thermodynamic functions have been calculated for the solid and liquid states over the temperature range 450–2300 K. The temperature dependence of the enthalpy in the ranges 300–1800 K and 2000–2300 K are represented: H°(T)-H°(298.15 K) = = 1.1949 · 10−2 · T2 + 122.38 · T + 347402 · T−1 − 38716 and H°(T)-H°(298.15 K) = 262.81 · T-− 196047, respectively. The calculated temperature, enthalpy, and entropy of melting for Gd2Se3 are: Tm = 1925 ± 40 K, ΔmH° (Gd2Se3) = 68.5 kJ · mole-1, ΔmS°(Gd2Se3) = 35.6 J · mole−1 · K−1. __________ Translated from Poroshkovaya Metallurgiya, Nos. 3–4(448), pp. 56–61, March–April, 2006.  相似文献   

11.
The chemical potential of O for the coexistence of Ni + NiO and Ni + Cr2O3 + NiCr2O4 equilibria has been measured employing solid-state galvanic cells, (+) Pt, Cu + Cu2O // (Y2O3)ZrO2 // Ni + NiO, Pt (-) and (+) Pt, Ni + NiO // (Y2O3)ZrO2 // Ni + Cr2O3 + NiCr2O4, Pt (-) in the temperature range of 800 to 1300 K and 1100 to 1460 K, respectively. The electromotive force (emf) of both the cells was reversible, reproducible on thermal cycling, and varied linearly with temperature. For the coexistence of the two-phase mixture of Ni + NiO, δΜO 2(Ni + NiO) = −470,768 + 171.77T (±20) J mol−1 (800 ≤T ≤ 1300 K) and for the coexistence of Ni + Cr2O3 + NiCr2O4, δΜO 2(Ni + Cr2O3 + NiCr2O4) = −523,190 + 191.07T (±100) J mol−1 (1100≤ T≤ 1460 K) The “third-law” analysis of the present results for Ni + NiO gives the value of ‡H 298 o = -239.8 (±0.05) kJ mol−1, which is independent of temperature, for the formation of one mole of NiO from its elements. This is in excellent agreement with the calorimetric enthalpy of formation of NiO reported in the literature.  相似文献   

12.
Diffusion of vanadium,chromium, and manganese in copper   总被引:2,自引:0,他引:2  
The diffusion coefficients of vanadium, chromium and manaanese in copper have been determined by the residual activity method with radioactive tracers V48, Cr51 and Mn54 in the temperature ranges between 955 and 1342 K, between 999 and 1338 K and between 971 and 1253 K, respectively. The temperature dependence of the diffusion coefficients is expressed by the following Arrhenius equations along with the probable errors:D V/Cu = (2.48 -0.44 +0.53 ) x 10−4 exp [-(215 ± 2) kJ mol−1/RT] m2 per s,D Cr/Cu = (0.337 -0.090 +0.124 ) x 10−4 exp [-(195 ± 3) kJ mol−1/RT] m2 per s,D Mn/Cu = (1.02 -0.18 +0.22 ) x 10−4 exp [-(200 ± 2) kJ mol−1/RT] m2 per s. Anomalous penetration profiles for the diffusion of Cr51 and Mn54 in the present results suggest that experimental results onD Cr/Cu andD Mn/Cu in the past have been influenced by oxidation and evaporation of the chemically active radiotracers during annealing for diffusion. formerly Graduate Student, Tohoku University  相似文献   

13.
The possibility of using quantitative differential thermal analysis to investigate phase transformations is examined. The temperature, enthalpy, and entropy of polymorphic transformations in LaGe1.8 and SmSi2 are determined: Ttr = 724 K, ΔtrH = 1635 ± 79 J · mole−1, ΔtrS = 2.3 ± 0.1 J · mole−1 · K−1 (LaGe1.8); Ttr = 658 K, ΔtrH = 1384 ± 69 J · mole−1, ΔtrS = 2.1 ± 0.1 J · mole−1 · K−1 (SmSi2). __________ Translated from Poroshkovaya Metallurgiya, Vol. 46, No. 3–4 (454), pp. 72–78, 2007.  相似文献   

14.
The stability of chromium (III) sulfate in the temperature range from 880 to 1040 K was determined by employing a dynamic gas-solid equilibration technique. The solid chromium sulfate was equilibrated in a gas stream of controlled SO3 potential. Thermogravimetric and differential thermal analyses were used to follow the decomposition of chromium sulfate. Over the temperature range studied, the change in the Gibbs’ free energy of formation of chromium sulfate Cr2O3(s) + 3SO3(g) → Cr2(SO4)3(s) can be expressed as ΔG0 = •143,078 + 129.6T (±300) cal mole•1 ΔG0 = •598,350 + 542T (±1250) J mole•1. X-ray diffraction analysis indicated that the decomposition product was crystalline Cr2O3 and that the mutual solubility between Cr2(SO4)3 and Cr2O3 was negligible. Over the temperature range investigated, the decomposition pressures were significantly high so that chromium sulfate is not expected to form on commercial alloys containing chromium when exposed to gaseous environments containing oxygen and sulfur (such as those encountered in coal gasification).  相似文献   

15.
Modified coulometric titrations on the galvanic cell: O in liquid Bi, Sn or Ge/ZrO2( + CaO)/Air, Pt, were performed to determine the oxygen activities in liquid bismuth and tin at 973, 1073 and 1173 and in liquid germanium at 1233 and 1373 K. The standard Gibbs energy of solution of oxygen in liquid bismuth, tin and germanium for 1/2 O2 (1 atm) →O (1 at. pct) were determined respectively to be ΔG° (in Bi) = −24450 + 3.42T (±200), cal· g-atom−1 = − 102310 + 14.29T (±900), J·g-atom−1, ΔG° (in Sn) = −42140 + 4.90T (±350), cal· g-aton−1 = −176300 + 20.52T (± 1500), J-g-atom−1, ΔG° (inGe) = −42310 + 5.31 7 (±300), cal·g-atom−1 = −177020 + 22.21T(± 1300), J· g-atom−1, where the reference state for dissolved oxygen was an infinitely dilute solution. It was reconfirmed that the modified coulometric titration method proposed previously by two of the present authors produced far more reliable results than those reported by other investigators. TOYOKAZU SANO, formerly a Graduate Student, Osaka University  相似文献   

16.
The enthalpies of formation of liquid (Cu + Mn) alloys were measured in the isoperibolic heat-flux calorimeter at 1573 K in the entire range of compositions. The integral molar enthalpy of mixing was found to be negative in the range of molar fractions 0 < x Mn < 0.31, with ΔH(min) = −0.69 ± 0.27 kJ mol−1 at x Mn = 0.12, and positive in the range 0.31 < x Mn < 1, with ΔH(max) = 3.67 ± 0.36 kJ mol−1 at x Mn = 0.75. Limiting partial molar enthalpies of manganese and copper were calculated as = −18.0 ± 6.6 kJ mol−1 and = 29.1 ± 4.9 kJ mol−1, respectively. The results are discussed in comparison with the thermodynamic data available in the literature and the equilibrium phase diagram.  相似文献   

17.
Adiabatic oxygen combustion calorimetry has been used to determine the standard enthalpy of combustion of manganese carbide (Mn23C6) to manganese oxide (Mn3O4) and carbon dioxide, to be − 12,746.0 ± 15.6 KJ mol−1. Combination of this value with standard data for the products of combustion (Mn3O4 and CO2) enabled the standard enthalpy of formation of Mn23C6 to be calculated to be − 245.5 ± 28.9 kJ mol−1. Formerly with the Metallurgy Department, University of Manchester  相似文献   

18.
The standard Gibbs energies of formation of platinum-rich intermetallic compounds in the systems Pt-Mg, Pt-Ca, and Pt-Ba have been measured in the temperature range of 950 to 1200 K using solid-state galvanic cells based on MgF2, CaF2, and BaF2 as solid electrolytes. The results are summarized by the following equations: ΔG° (MgPt7) = −256,100 + 16.5T (±2000) J/mol ΔG° (MgPt3) = −217,400 + 10.7T (±2000) J/mol ΔG° (CaPt5) = −297,500 + 13.0T (±5000) J/mol ΔG° (Ca2Pt7) = −551,800 + 22.3T (±5000) J/mol ΔG° (CaPt2) = −245,400 + 9.3T (±5000) J/mol ΔG° (BaPt5) = −238,700 + 8.1T (±4000) J/mol ΔG° (BaPt2) = −197,300 + 4.0T (±4000) J/mol where solid platinum and liquid alkaline earth metals are selected as the standard states. The relatively large error estimates reflect the uncertainties in the auxiliary thermodynamic data used in the calculation. Because of the strong interaction between platinum and alkaline earth metals, it is possible to reduce oxides of Group ILA metals by hydrogen at high temperature in the presence of platinum. The alkaline earth metals can be recovered from the resulting intermetallic compounds by distillation, regenerating platinum for recycling. The platinum-slag-gas equilibration technique for the study of the activities of FeO, MnO, or Cr2O3 in slags containing MgO, CaO, or BaO is feasible provided oxygen partial pressure in the gas is maintained above that corresponding to the coexistence of Fe and “FeO.” Formerly Professor and Chairman, Department of Metallurgy, Indian Institute of Science Formerly Visiting Scientist, Department of Metallurgy, Indian Institute of Science  相似文献   

19.
Phase relations and thermodynamic properties of the Cr-O system were studied at temperatures from 1500 °C to 1825 °C. In addition to Cr and Cr2O2, a third crystalline phase was found to be stable in the temperature range from 1650 °C to 1705 °C. The atomic ratio of oxygen to chromium of this phase, which decomposes upon cooling to form Cr and Cr2O3, was determined as 1.33 + 0.02, in good agreement with the formula Cr3O4. Temperatures and phase assem blages for invariant equilibria of the Cr-O system were determined as follows: Cr2O3 + Cr + Cr3O4, 1650 °C ± 2 °C; Cr3O4 + Cr + liquid oxide, 1665 °C ± 2 °C; and Cr3O4 + Cr2O3 + liquid oxide, 1705 °C ± 3 °C. The composition of the liquid oxide phase at the eutectic temperature of 1665 °C was found to be close to CrO. Relations between oxygen pressure and temperature for the univariant equilibria of the Cr-O system were established by equilibrating Cr and/or Cr2O3 starting materials in H2-CO2 mixtures of known oxygen potentials at temper atures from 1500 ΔC to 1825 °C. From this information, the standard free-energy changes (ΔGΔ) for various reactions were calculated as follows: 2Cr (s) + 3/2O2 = Cr2O3 (s): ΔG ° = -1,092,442 + 237.94T Joules, 1773 to 1923 K; 3Cr (s) + 2O2 = Cr2O4 (s): ΔG ° =-1,355,198 + 264.64T Joules, 1923 to 1938 K; and Cr (s) + l/2O2 = CrO (1): ΔG ° =-334,218 + 63.81T Joules, 1938 to 2023 K. Formerly Graduate Research Assistant, The Pennsylvania State University Formerly Professor  相似文献   

20.
The enthalpies of formation at 1385 ±2 K of the following crystalline borides have been determined by high temperature solution calorimetry using liquid copper as the calorimetric solvent. Fe2B-67.87 ±8.05 kJ mol−1, Co2B -58.1 ±7.0 kJ mol−1, Ni2B -67.66 ±4.12 kJ ml−1, FeB-64.63 ±4.34 kJ mol−1, CoB -69.52 ±6.0 kJ mol−1, and NiB -40.2 ±3.77 kJ mol−1. The enthalpy of fusion of NiB has been determined to be 28.25 ±1.54 kJ mol−1 at its melting point of 1315 K. New data are reported also for the enthalpies of solution of iron, cobalt, and nickel in copper, and for the enthalpies of interaction between these metals and boron in dilute solutions in liquid copper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号