首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
建立了柴油机组合活塞的2D有限元模型,并利用传热系数反求法对该模型进行热分析。在仿真分析中,将活塞头部外表面传热系数定义为设计参数,实测温度与仿真温度的差值定义为目标函数。通过仿真计算得到了活塞头部外表面传热系数的分布,并利用反求法得到的传热系数对有限元模型进行热分析,仿真结果与实测温度吻合;传热系数反求法收敛迅速,可以有效用于活塞及其他内燃机零部件的温度分布和热负荷分析。  相似文献   

2.
冯科  韩志伟 《工业加热》2010,39(3):20-22
针对某钢厂新建的热处理钢板气雾冷却装置,基于有限差分传热仿真计算,开发了相应的热处理钢板气雾冷却数学模型,其中详细考虑了钢板在冷却区内所经历的多种传热边界条件,包括水冲击传热、辊子接触传热、辐射传热和自然对流传热。通过现场的钢板表面温度测试工作表明,模型预测值与实际测试值之间的吻合情况良好,模型具有较高的仿真精度。应用该模型,按照一定的热处理工艺要求(主要指对出口温度和钢板表面/中心温降速率的控制),对气雾冷却区进行了冷却水表的理论设计(即各种厚度规格钢板所对应的冷却水流量),其设计结果已成功地应用于生产现场。  相似文献   

3.
The heat transfer phenomena of the unsteady laminar forced convection in parallel plate channels with wall conduction effects are still not very well understood. An inverse algorithm based on the conjugate gradient method is proposed to estimate the boundary conditions of these problems, and the minimization of object function is used to reduce the estimated error. The estimation of applied heat flux is found to be highly dependent of temperature sensor location and uncertainty, plate thickness, and heating way. The results show that the predicted boundary conditions by the present inverse method are consistent with the initially specified ones.  相似文献   

4.
A mathematical model is proposed for predicting frost behavior on a heat exchanger fin under frosting conditions, taking into account fin heat conduction. The change in the three-dimensional airside airflow caused by frost growth is reflected in this model. The numerical estimates of frost thickness are consistent with experimental data, with an error of less than 10%. Due to fin heat conduction, frost thickness decreases exponentially toward the fin tip, while considerable frost growth occurs near the fin base. When a constant fin surface temperature is assumed, the predicted frost thickness was larger by more than 200% at maximum, and the heat flux by more than 10% on average, compared to results obtained with fin heat conduction taken into account. Therefore, fin heat conduction could be an essential factor in accurately predicting frost behavior. To improve prediction accuracy under the assumption of constant fin surface temperature, the equivalent temperature (for predicting frost behavior) is defined to be the temperature at which the heat transfer rate neglecting fin heat conduction is the same as the heat transfer rate with fin heat conduction taken into consideration. Finally, a correlation for predicting the equivalent temperature is suggested.  相似文献   

5.
AnalysisofHeatTransferBehaviouroftheConductionColdPlateSystem¥YangChun-Xin;DangChao-Bin(BeijingUniversityofAeronauticsandAstr...  相似文献   

6.
为了研究光伏背板漏电起痕时表面温度特性,采用硅橡胶平板为研究对象并建立热路模型,实现放电表面温度的间接计算。首先根据光伏背板漏电起痕的特点对硅橡胶平板建立暂态热路模型,考虑到空气对流造成的影响,引入空气对流指数n对模型进行改进,提出空气对流指数和对流换热系数的求解方法。然后利用金属丝发热模拟平板表面放电时的发热状态,设计硅橡胶平板温升试验获得温度变化数据并与模型计算结果进行对比。结果表明,在求解得到对流换热系数和空气对流指数的基础上,暂态热路模型计算结果与试验结果的相对误差不超过10%,具有较高精度。  相似文献   

7.
In this study, a conjugate gradient method based inverse algorithm is applied to estimate the unknown space- and time-dependent heat-transfer rate on the surface of the insulation layer of a double circular pipe heat exchanger using temperature measurements. It is assumed that no prior information is available on the functional form of the unknown heat-transfer rate; hence the procedure is classified as the function estimation in inverse calculation. The temperature data obtained from the direct problem are used to simulate the temperature measurements. The accuracy of the inverse analysis is examined by using simulated exact and inexact temperature measurements. Results show that an excellent estimation on the space- and time-dependent heat-transfer rate can be obtained for the test case considered in this study.  相似文献   

8.
基于红外测温的内部缺陷尺寸、方位的计算方法研究   总被引:7,自引:2,他引:5  
对具有内部缺陷的平板试件的传热建立了三维物理和数学模型,提出了通过表面红外测温确定内部缺陷尺寸、方位的计算方法。同时,分析了测量误差和缺陷导热系数对计算结果的影响。通过计算分析可以得到结论:本方法可以精确地确定内部缺陷的尺寸和方位,测量误差对内部缺陷估计的影响较小;在试件的导热系数远大于缺陷的导热系数时,缺陷导热系数的微小变化对缺陷尺寸和位置的计算没有明显的影响;适用于任何尺寸、方位可用有限个参数描述的内部缺陷的检测。  相似文献   

9.
This paper aims to present an effective two-dimensional inverse heat conduction technique and an experimental design for accurately estimating the local convective heat transfer coefficient of vapor condensation over a conical surface, given temperature measurements at some interior locations. The functional form for the heat transfer coefficient is not known a priori. The method uses a sequential procedure together with Beck's function specification approach. Solution accuracy and the effects of experimental errors are examined using simulated temperature data. It is concluded that a good estimation of space-variable heat transfer coefficient can be made from the knowledge of transient temperature recordings using the proposed inverse heat conduction problem method. The method is also used in a series of numerical experiments to provide the optimum experimental design for condensation heat transfer investigation.  相似文献   

10.
This paper reports an experimental study on convective boiling heat transfer of nanofluids and de-ionized water flowing in a multichannel. The test copper plate contains 50 parallel rectangular minichannels of hydraulic diameter 800 μm. Experiments were performed to characterize the local heat transfer coefficients and surface temperature using copper–water nanofluids with very small nanoparticles concentration. Axial distribution of local heat transfer is estimated using a non-intrusive method. Only responses of thermocouples located inside the wall are used to solve inverse heat conduction problem. It is shown that the distribution of the local heat flux, surface temperature, and local heat transfer coefficient is dependent on the axial location and nanoparticles concentration. The local heat transfer coefficients estimated inversely are close to those determined from the correlation of Kandlikar and Balasubramanian [An extension of the flow boiling correlation to transition, laminar and deep laminar flows in minichannels and microchannels, Heat Transfer Eng. 25 (3) (2004) 86–93.] for boiling water. It is shown that the local heat flux, local vapor quality, and local heat transfer coefficient increase with copper nanoparticles concentration. The surface temperature is high for de-ionized water and it decreases with copper nanoparticles concentration.  相似文献   

11.
板式换热器性能的数值模拟   总被引:1,自引:1,他引:0  
建立了人字形板式换热器冷热双流道的流体流动与传热计算模型,利用计算流体力学软件对5组不同速度工况下换热器内流体的流动和传热进行了数值模拟,分析了换热器流道内的速度场、温度场和压力场.结果表明:数值模拟得到的板式换热器进、出口温差和压降与试验测量值的误差均小于6%;换热器内流体的流动和传热存在明显的不均匀性,导致其进、出口的另一侧出现明显的传热"死区";换热器的总传热系数和流道阻力均随着流体流速的增大而增大.  相似文献   

12.
In this research, boiling heat transfer on a hot moving plate caused by multiple impinging water jets in multiple jet rows is studied. An inverse heat conduction code is developed to analyze the readings of thermocouples that are implemented inside the plate in order to find the surface values of temperature and heat flux. Effects of nozzle stagger, plate velocity, and jet line spacing are studied. Nozzle stagger is found to affect the uniformity of heat transfer across the width of the plate. Jet line spacing can affect the heat transfer between two adjacent jet rows. Plate speed is important only in the higher entry temperatures and in the impingement zone.  相似文献   

13.
A three-dimensional inverse heat conduction problem in imaging the local heat transfer coefficients for plate finned-tube heat exchangers utilizing the steepest descent method and a general purpose commercial code CFX4.4 is applied successfully in the present study based on the simulated measured temperature distributions on fin surface by infrared thermography.It is assumed that no prior information is available on the functional form of the unknown local heat transfer coefficients in the present study. Thus, it can be classified as function estimation for the inverse calculations.Two different heat transfer coefficients for in-line tube arrangements with different measurement errors are to be estimated. Results show that the present algorithm can obtain the reliable estimated heat transfer coefficients.  相似文献   

14.
Heat transfer from a pulsating laminar impingement slot jet on a flat surface was investigated numerically and experimentally. Inlet velocity was considered sinusoidal velocity and square wave velocity. Experimental studies were done only for the sinusoidal velocity state. An inverse heat conduction method, conjugated gradient method with adjoint equation, was used for the experimental estimation of the local heat transfer coefficient along the target surface. Effect of the square wave velocity of the laminar impingement slot jet was studied numerically. The results show pulsations in flow change flow patterns and the thermal boundary layer thickness because of the newly forming thermal boundary layer is extremely small each time the flow is resumed. Heat transfer rate in this state enhances due to pulsating inlet velocity in comparison with steady state. Heat transfer increases with increasing pulsation amplitude. Enhancement in mean heat transfer on the target plate for sinusoidal velocity is rather than square wave velocity.  相似文献   

15.
The paper describes the operation and thermal analysis of a new prototype to determine thermal balance of radiative cooling. The aim of the study is to establish a simple but accurate procedure to calculate the radiative heat exchange between two bodies to be used in the determination of sky temperature, clear sky index or plate emissivity. The radiative transfer calculation has been based on the power required to maintain a constant temperature at the radiative plate of the prototype, provided that the convection and conduction terms are well known. The methodology is applicable to a further advanced system, which avoids convection and reduces conduction to maximise radiative effects, minimising errors and providing more accurate results. Tests have been carried out at a plate temperature of 40 °C, which was optimum for the prototype size and operating conditions. Higher or lower temperatures have lead to a reduction of the fraction of radiative transfer or to the use of very low external power, which complicates the prototype design and makes the temperature control system very costly. Tests carried out in the prototype have shown a perfect matching between total heat transfer and supplied power with an error of less than 5%. This result allows high precision determination of sky temperature, clear sky index or plate emissivity from the use of the proposed methodology.  相似文献   

16.
The measurement of surface heating rate is an imperative parameter in the force convection ground-based facility for short duration investigation due to the heat transfer rate is changing rapidly. The coaxial thermocouples are suitable to measure the transient heat flux in fast varying heat transfer application because of having fast response time in the range microseconds or less. In this addition, the K-type, E-type, and J-type of coaxial thermocouples are contrived as well as the thermal coefficient resistance (TCR) and sensitivity (S) has been calculated from oil-bath based technique. These handmade coaxial thermocouples are exposed in a forced convection flow facility having three different input step heat loads as well as their transient heat fluxes are estimated using one-dimensional heat conduction modeling for the semi-infinite body. The numerical simulation has also been carried out with the analogous experimental parameters using ANSYS-FLUENT v.15.0 and compared with the outcome of the experimental approach and it is found that the average value of the transient temperatures having 0.3% error and surface heat flux recovered from this temperature is 10%. This study reveals the measuring ability of these handmade coaxial thermocouples at low temperature and low velocity on short duration transient measurements.  相似文献   

17.
吴海波  张缦  孙运凯  吕清刚 《动力工程》2012,32(8):586-590,611
根据300MW循环流化床(CFB)锅炉现场测试数据并结合以往CFB锅炉传热系数的研究成果,建立了屏式受热面烟气侧的传热模型,包括辐射传热模型和对流传热半经验公式.利用该模型对某300MWCFB锅炉在94%锅炉最大连续蒸发量(BMCR)工况下炉膛内屏式受热面的传热系数进行了计算,分析了屏式受热面管间节距、炉膛温度、工质温度、壁面黑度及烟气速度等因素对传热系数的影响.结果表明:烟气速度、炉膛温度和壁面黑度对传热系数的影响较大,所建立的传热模型能够合理地反映主要因素对CFB锅炉屏式受热面传热的影响.  相似文献   

18.
A method for the measurement of local convective heat transfer coefficients from the outside of a heat-transferring wall has been developed. This method is contact-free and fluid independent, employing radiant heating by laser or halogen spotlights and an IR camera for surface temperature measurements; it allows for the rapid evaluation of the heat transfer coefficient distribution of sizable heat exchanger areas. The technique relies first on experimental data of the phase lag of the outer surface temperature response to periodic heating, and second on a simplified numerical model of the heat exchanger wall to compute the local heat transfer coefficients from the processed data. The IR temperature data processing includes an algorithm for temperature drift compensation, phase synchronization between the periodic heat flux and the measured temperatures, and Single Frequency Discrete Fourier Transformations. The ill-posed inverse heat conduction problem of deriving a surface map of heat transfer coefficients from the phase-lag data is solved with a complex number finite-difference method applied to the heat exchanger wall. The relation between the local and the mean heat transfer coefficients is illuminated, calculation procedures based on the thermal boundary conditions are given. The results from measurements on a plate heat exchanger are presented, along with measurements conducted on pipe flow for validation. The results show high-resolution surface maps of the heat transfer coefficients for a chevron-type plate for three turbulent Reynolds numbers, including a promising approach of visualizing the flow field of the entire plate. The area-integrated values agree well with literature data. CFD calculations with an SST and an EASM–RSM were carried out on a section of a PHE channel. A comparison with the measured data indicates the shortcomings of even advanced turbulence models for the prediction of heat transfer coefficients but confirms the advantages of EASM–RSM in complex flows.  相似文献   

19.
Tungsten inert Gas (TIG) welding takes place in an atmosphere of inert gas and uses a tungsten electrode. In this process heat input identification is a complex task and represents an important role in the optimization of the welding process. The technique used to estimate the heat flux is based on solution of an inverse three-dimensional transient heat conduction model with moving heat sources. The thermal fields at any region of the plate or at any instant are determined from the estimation of the heat rate delivered to the workpiece. The direct problem is solved by an implicit finite difference method. The system of linear algebraic equations is solved by Successive Over Relaxation method (SOR) and the inverse problem is solved using the Golden Section technique. The golden section technique minimizes an error square function based on the difference of theoretical and experimental temperature. The temperature measurements are obtained using thermocouples at accessible regions of the workpiece surface while the theoretical temperatures are calculated from the 3D transient thermal model.  相似文献   

20.
The inverse problem endowing with multiple unknown functions gradually becomes an important topic in the field of numerical heat transfer, and one fundamental problem is how to use limited minimal data to solve the inverse problem. With this in mind, in the present article we search the solution of a general inverse heat conduction problem when two boundary data on the space-time boundary are missing and recover two unknown temperature functions with the help of a few extra measurements of temperature data polluted by random noise. This twofold ill-posed inverse heat conduction problem is more difficult than the backward heat conduction problem and the sideways heat conduction problem, both with one unknown function to be recovered. Based on a stable adjoint Trefftz method, we develop a global boundary integral equation method, which together with the compatibility conditions and some measured data can be used to retrieve two unknown temperature functions. Several numerical examples demonstrate that the present method is effective and stable, even for those of strongly ill-posed ones under quite large noises.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号