首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Single-phase α-CaSO4·0.5H2O whiskers were directly synthesized from waste Ca(NO3)2 solution using a hydrothermal method, and HNO3 was synchronously regenerated. The effects of reaction temperature and Ca2+ concentration on the phase composition and morphology of products were determined by X-ray diffraction and optical microscopy. On the basis of the experimental results, the formation diagram of α-CaSO4·0.5H2O was plotted within the range of 5-35 g·L-1 Ca2+ and 115℃-150℃. In addition, the conditions of the direct synthesis of α-CaSO4·0.5H2O were determined. Well-crystallized, single-phase α-CaSO4·0.5H2O whiskers with high aspect ratios (length, 1785 μm; diameter, 10.63 μm; aspect ratio, 168) and HNO3 (70.25 g·L-1) were obtained at the optimal conditions of 25 g·L-1 Ca2+ and 125℃.  相似文献   

2.
In the production of lithium-ion batteries (LIBs) and recycling of spent LIBs, a large amount of low-concentration lithium-containing wastewater (LCW) is generated. The recovery of Li from this medium has attracted significant global attention from both the environmental and economic perspectives. To achieve effective Li recycling, the features of impurity removal and the interactions among different ions must be understood. However, it is generally difficult to ensure highly efficient removal of impurity ions while retaining Li in the solution for further recovery. In this study, the removal of typical impurity ions from LCW and the interactions between these species were systematically investigated from the thermodynamic and kinetics aspects. It was found that the main impurities (e.g., Fe3+, Al3+, Ca2+, and Mg2+) could be efficiently removed with high Li recovery by controlling the ionic strength of the solution. The mechanisms of Fe3+, Al3+, Ca2+, and Mg2+ removal were investigated to identify the controlling steps and reaction kinetics. It was found that the precipitates are formed by a zero-order reaction, and the activation energies tend to be low with a sequence of fast chemical reactions that reach equilibrium very quickly. Moreover, this study focused on Li loss during removal of the impurities, and the corresponding removal rates of Fe3+, Al3+, Ca2+, and Mg2+ were found to be 99.8%, 99.5%, 99%, and 99.7%, respectively. Consequently, high-purity Li3PO4 was obtained via one-step precipitation. Thus, this research demonstrates a potential route for the effective recovery of Li from low-concentration LCW and for the appropriate treatment of acidic LCW.  相似文献   

3.
Ta3N5 was synthesized by nitridation of Ta2O5 under NH3 flow at 700 °C. The catalyst was pure Ta3N5 according to X-ray diffraction (XRD), and was about 5 nm in size with a BET specific surface area 52.8 m2/g. When Ta3N5 was added to Fe3+/H2O2 solution (known as Fenton-like system), most Fe3+ were adsorbed on the Ta3N5 surface and could not react with H2O2 in the dark, which is different from the general Fenton reaction. Under visible light irradiation, adsorbed Fe3+ ions were reduced to Fe2+ rapidly and Fe2+ were reoxidized by H2O2 on the Ta3N5 surface, thus a fast Fe3+/Fe2+ cycling was established. Kinetics and ESR measurements supported this mechanism. The Ta3N5/Fe3+/H2O2 system could efficiently decompose H2O2 to generate hydroxyl radicals driven by visible light, which could accelerate significantly the degradation of organic molecules such as N,N-dimethylaniline (DMA), and 2,4-dichlorophenol (DCP). A mechanism was proposed for iron cycling on the basis of experimental results.  相似文献   

4.
Hierarchical dendritic micro–nano structure Zn Fe_2O_4 have been prepared by electrochemical reduction and thermal oxidation method in this work. X-ray diffractometry, Raman spectra and field-emission scanning electron microscopy were used to characterize the crystal structure, size and morphology. The results show that the sample(S-2) is composed of pure ZnFe_2O_4 when the molar ratio of Zn~(2+)/Fe~(2+)in the electrolyte is 0.35. Decreasing the molar ratio of Zn~(2+)/Fe~(2+), the sample(S-1) is composed of ZnFe_2O_4 and α-Fe_2O_3, whereas increasing the molar ratio of Zn~(2+)/Fe~(2+), the sample(S-3) is composed of ZnFe_2O_4 and Zn O. The lattice parameters of ZnFe_2O_4 are influenced by the molar ratio of Zn~(2+)/Fe: Zn at excess decreases the cell volume whereas Fe at excess increases the cell volume of Zn Fe_2O_4. All the samples have the dendritic structure, of which S-2 has micron-sized lush branches with nano-sized leaves. UV–Vis diffuse reflectance spectra were acquired by a spectrophotometer. The absorption edges gradually blue shift with the increase of the molar ratio of Zn~(2+)/Fe~(2+). Photocatalytic activities for water splitting were investigated under Xe light irradiation in an aqueous olution containing 0.1 mol·L~(-1)Na_2S/0.02 mol·L~(-1)Na_2SO_3 in a glass reactor. The relatively highest photocatalytic activity with 1.41 μmol·h-1· 0.02 g~(-1)was achieved by pure ZnFe_2O_4sample(S-2). The photocatalytic activity of the mixture phase of Zn Fe_2O_4 and α-Fe_2O_3(S-1) is better than ZnF e_2O_4 and ZnO(S-3).  相似文献   

5.
Phosphate of transition elements A3M4(PO4)6 (A=Fe, Ni, Zn, Mg, Cu, Cr and M=Fe, V, Cr) are prepared by solid methods, at 1223 K. Their activity in H2S selective oxidation are compared. In spite of their low specific area, the catalysts develop a good activity (up to 17% of H2S conversion for surface area lower than 1 m2 g−1) and an excellent sulphur selectivity (always higher than 95%). Screening experiments show that the best systems always contain Fe as element and, in these cases, Mössbauer characterisations evidence the establishment of Fe2+/Fe3+ mixed valency during the reaction. As shown by XANES and XRD results, the ability of the element in the divalent A site to promote the redox mechanism between M2+/M3+and H2S/S0 and to prevent sulphidation determines the catalytic activity.  相似文献   

6.
Complete Zn2+ exchange of two single crystals of zeolite X (Na92Si100Al92O384) was attempted at 80°C from aqueous Zn(NO3)2 (pH=5.5 at 23°C). The structures of crystal 1 (partially dehydrated by evacuation at 23°C and 10−3 Torr for two days) and crystal 2 (fully hydrated) were determined by X-ray diffraction techniques in the cubic space group Fd at 23°C (ao=24.750(5) and 24.872(6) Å, respectively). They were refined using all intensities to the final error indices R1=0.126 and 0.116 based on the 428 and 348 reflections, respectively, for which Fo>4σ(Fo). Each crystal has about 54 Zn2+ ions per unit cell, indicating the uptake of eight excess Zn(OH)2 molecules. In both crystals, further extensive hydrolysis of Zn2+ is seen. Many non-framework oxygens were not found. In crystal 1, 34 Zn2+ ions per unit cell occupy conventional cationic sites: 10 are at site I, 12 at site II, and 12 at site III. Three Zn2+ ions each coordinate to a framework oxygen at a non-conventional site in the supercages. Three Zn2+ ions at the centers of sodalite cavities each coordinate tetrahedrally to four non-framework oxygens to give (likely) Zn(OH)2(H2O)2 which hydrogen bonds multiply to the zeolite framework. At three supercage positions, about 14 Zn2+ ions that do not coordinate to the zeolite framework are found. Per unit cell, 37 H3O+ ions are found: 20 at site I and 17 at site II. It is presumed, considering the number of H3O+ ions, that the latter 14 Zn2+ ions are hydrolyzed Zn2+ ions, likely hydrated Zn(OH)2 molecules, some likely bridging. In crystal 2, 33 Zn2+ ions per unit cell are found at conventional cationic sites: two at site I, 14 at two different sites I, seven at site II, and 10 at site III. As in crystal 1, three Zn2+ ions each coordinate to a framework oxygen at a non-conventional site in the supercage. At three supercage positions, about 18 Zn2+ ions that do not coordinate to the zeolite framework are found. Per unit cell, 40 H3O+ ions are found: 18 at site II and 22 at site II. Only about 16 non-framework oxygens were found per unit cell: eight water molecules in the supercages and, in the sodalite cages, eight hydroxide ions which participate in the formation of two nearly cubic Zn4(OH)44+ clusters.  相似文献   

7.
利用嗜酸性氧化亚铁硫杆菌将含硫酸亚铁废溶液中的Fe2+氧化成Fe3+后用于脱除H2S,同时实现了含硫酸亚铁废溶液的循环利用和H2S的脱除。而溶解性Fe3+较高的生成量是保证该处理系统连续高效运行的关键因素。但在充足氮源和K+条件下大量Fe3+以黄铁矾沉淀形式存在。因此,本文通过控制氮源种类及投加浓度,减少沉淀生成,增大溶解性Fe3+生成量,以期提高H2S的去除效率。结果表明(NH42HPO4可替代以往研究中的(NH42SO4作为氮源,确定适宜菌体生长的氮源浓度范围为0.33~1 g·L-1。在1 g·L-1 (NH42HPO4条件下细菌生长无明显停滞期、Fe2+平均氧化速率为0.221~0.229 g·(L·h) -1,Fe3+生成量为7.62~7.72 g·L-1,沉淀量为1.17 g·L-1,因此确定(NH42HPO4为1 g·L-1时最能保证H2S的脱除效率。为降低工艺成本,最低可采用0.33 g·L-1为运行浓度。该优化方案不仅保证了菌体的Fe2+氧化活性,而且有效地减少了菌体培养过程中沉淀的产生,获得了较高的Fe3+生成量和增速,为使用含硫酸亚铁废溶液处理H2S的工艺条件优化提供了依据。  相似文献   

8.
周伟  赵海谦  高继慧  吴少华 《化工学报》2016,67(10):4413-4421
Fe2+的再生直接决定Fenton体系产生的能力。选取羟胺、对苯二酚、对苯醌、亚硫酸钠4种典型添加剂,通过分析不同改性Fenton体系中Fe2+浓度、H2O2浓度、氧化还原电极电位(ORP),揭示了Fe2+再生机制的差异,并进一步分析了不同添加剂与体系中H2O2及·OH的反应情况。结果表明:NH2OH能快速使Fe2+再生,但伴随其消耗,Fe2+浓度不断降低。对苯二酚、对苯醌具有相似效果,两者均可大大强化Fe2+的再生。与NH2OH不同,两者在体系中可迅速建立醌循环,持续还原Fe3+,且以两种物质或其组合均可建立循环。与上述机理均不同,Na2SO3会先与·OH及H2O2反应,因而不能有效还原Fe3+。实验还发现添加剂均存在与·OH的反应,其中Na2SO3还会消耗H2O2。  相似文献   

9.
In the present study,a plasma-electrochemical method was demonstrated for the synthesis of europium doped ceria nanoparticles.Ce(NO3)3· 6H2O and Eu(NO3)3·5H2O were used as the starting materials and being dissolved in the distilled water as the electrolyte solution.The plasma-liquid interaction process was in-situ investigated by an optical emission spectroscopy,and the obtained products were characterized by complementary analytical methods.Results showed that crystalline cubic CeO2:Eu3+ nanoparticles were successfully obtained,with a particle size in the range from 30 to 60 nm.The crystal structure didn't change during the calcination at a temperature from 400℃ to 1000℃,with the average erystallite size being estimated to be 52 nm at 1000℃.Eu3+ ions were shown to be effectively and uniformly doped into the CeO2 lattices.As a result,the obtained nanophosphors emit apparent red color under the UV irradiation,which can be easily observed by naked eye.The photoluminescence spectrum further proves the downshift behavior of the obtained products,where characteristic 5Do → 7F1,2,3 transitions of Eu3+ ions had been detected.Due to the simple,flexible and environmental friendly process,this plasma-electrochemical method should have great potential for the synthesis of a series of nanophosphors,especially for bio-application purpose.  相似文献   

10.
通过后接枝法制备了氨基功能化SBA-15介孔氧化硅(S-N),用于吸附过氧化氢溶液中的金属和阴离子及有机杂质制高纯过氧化氢.研究了接枝量对吸附剂结构和性能的影响并发现S-N中的氮含量随接枝剂用量增加而增加,最高为1.83%.S-N保留了高度有序的六方孔道结构,但比表面积和孔体积均随接枝量增加而下降.在过氧化氢溶液中,各...  相似文献   

11.
Metal ions including Fe3+, Ca2+, Mg2+, Ni2+, Co2+ and Cu2+ are commonly found in the leaching solution of laterite-nickel ores, and the pre-removal of Fe3+ is extremely important for the recovery of nickel and cobalt. Di(2-ethylhexyl)phosphate acid (D2EHPA) showed high extraction rate and selectivity of Fe3+ over other metal ions. The acidity of the aqueous solution is crucial to the extraction of Fe3+, and the stoichiometry ratio between Fe3+ and the extractant is 0.86:1.54. The enthalpy for the extraction of Fe3+ using D2EHPA was 19.50 kJ/mol. The extraction of Fe3+ was ≥99% under the optimized conditions after a three-stage solvent extraction process. The iron stripping effects of different reagents showed an order of H2C2O4>NH4HCO3>HCl>NaCl>NaHCO3>Na2SO3. The stripping of Fe was ≥99% under the optimized conditions using H2C2O4 as a stripping reagent.  相似文献   

12.
Fe2+/H2O2体系内各种自由基在氧化NO中的作用   总被引:1,自引:0,他引:1       下载免费PDF全文
Fe2+/H2O2体系可分解产生多种氧化性自由基, 主要包括O2-·、·OH和HO2·。本文实验研究了O2-·、·OH及HO2·在Fe2+/H2O2体系氧化NO气体过程中的作用。结果表明:在本实验条件下, O2-·对NO气体的氧化作用不明显;·OH及HO2·是该体系氧化NO气体的主要活性物质, 其中·OH的氧化作用更大。加快自由基的生成速率可以增强Fe2+/H2O2体系对NO气体的氧化能力, 但O2的生成速率同时加快。只有少量·OH及HO2·参与NO的氧化, ·OH与HO2·之间的快速反应是Fe2+/H2O2体系氧化NO过程中H2O2利用率低的主要原因。  相似文献   

13.
Nafion supported catalytic membranes were found to be effective in the partial oxidation of propane to oxygenates with H2O2 in the presence of Fe2+ under mild conditions. The influence of [Fe2+] and [H2O2] on the reaction rate and product distribution in the temperature range 80–110°C has been ascertained. A reaction pathway involving the electrophilic activation of propane on superacid sites and subsequent reaction of the activated propane molecules with OH radicals generated by Fe2+/H2O2 Fenton system is discussed.  相似文献   

14.
H2O2 used in the photo-Fenton reaction with iron catalyst can accelerate the oxidation of Fe2+ to Fe3+ under UV irradiation and in the dark (in the so called dark Fenton process). It was proved that conversion of phenol under UV irradiation in the presence of H2O2 predominantly produces highly hydrophilic products and catechol, which can accelerate the rate of phenol decomposition. However, while H2O2 under UV irradiation could decompose phenol to highly hydrophilic products and dihydroxybenzenes in a very short time, complete mineralization proceeded rather slowly. When H2O2 is used for phenol decomposition in the presence of TiO2 and Fe–TiO2, decrease of OH radicals formed on the surface of TiO2 and Fe–TiO2 has been observed and photodecomposition of phenol is slowed down. In case of phenol decomposition under UV irradiation on Fe–C–TiO2 photocatalyst in the presence of H2O2, marked acceleration of the decomposition rate is observed due to the photo-Fenton reactions: Fe2+ is likely oxidized to Fe3+, which is then efficiently recycled to Fe2+ by the intermediate products formed during phenol decomposition, such as hydroquinone (HQ) and catechol.  相似文献   

15.
Zn,Al–CO3 compounds with the hydrotalcite-like (layered double hydroxide, LDH) structure were prepared by a co-precipitation method followed by hydrothermal treatment under microwave irradiation. The influence of the ageing treatment was studied in two series of samples with different Zn2+/Al3+ ratios, namely, 3/1 and 2/1. Moreover, the effects of the heating temperature and of the irradiation time were studied in order to select the optimum preparation conditions. The solids were fully characterised by powder X-ray diffraction (PXRD), 27Al MAS-NMR, FT-IR spectroscopy, thermal analyses (DTA and TG), N2 adsorption/desorption at −196 °C and TEM. The results showed that whatever the chemical composition of the starting mixture, HTlcs with Zn2+/Al3+ ratio equal to 2 were obtained, and it was impossible to overcome the ZnO segregation when the molar ratio was >2. These compounds were stable and their crystallinity could be quickly enhanced when the temperature treatment was 100 °C, whereas at 125 °C the ZnO segregation was not prevented.  相似文献   

16.
采用实验方法研究了低成本环境友好型添加剂抗坏血酸(AA)对Fe2+/H2O2体系氧化NO气体及其对体系内H2O2分解的影响,分析了AA对体系氧化NO能力及H2O2分解的影响机制。研究结果表明:AA通过加速Fe3+向Fe2+的转化而促进Fe2+/H2O2体系对NO的氧化。[AA]0:[Fe2+]0对体系氧化NO的能力及H2O2的分解具有重要影响。综合考虑NO氧化脱除量及H2O2消耗量,合理的[AA]0:[Fe2+]0为1/3~1/2。AA的分次添加方式可大幅度提升体系氧化NO气体的能力。研究结果可望为发展基于H2O2为氧化剂的烟气NO绿色氧化技术提供理论基础。  相似文献   

17.
Recovery of alginate extracted from aerobic granular sludge (AGS) has given rise to a novel research direction. However, these extracted alginate solutions have a water content of nearly 100%. Alternately, ultrafiltration (UF) is generally used for concentration of polymers. Furthermore, the introduction of multivalent metal ions into alginate may provide a promising method for the development of novel nanomaterials. In this study, membrane fouling mitigation by multivalent metal ions, both individually and in combination, and properties of recycled materials were investigated for UF recovery of sodium alginate (SA). The filtration resistance showed a significantly negative correlation with the concentration of metal ions, arranged in the order of Mg2+ < Ca2+ < Fe3+ < Al3+ (filtration resistance mitigation), and the moisture content of recycled filter cake showed a marked decrease. For Ca2+, Mg2+, Fe3+, and Ca2++Fe3+, the filtration resistances were almost the same when the total charge concentration was less than 5 mmol·L-1. However, when the total charge concentration was greater than 5 mmol·L-1, membrane fouling mitigation increased significantly in the presence of Ca2+ or Fe3+ and remained constant for Mg2+ with the increase of total charge concentration. The filtration resistance mitigation was arranged in the order of Fe3+ > Fe3+ + Ca2+ > Ca2+ > Mg2+. Three mechanisms were proposed in the presence of Fe3+, such as the decrease of SA concentration, change in pH, and production of hydroxide iron colloids from hydrolysis. The properties of recycled materials (filter cake) were investigated via optical microscope observation, dynamic light scattering, Fourier transform infrared, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy. The results provide further insight into UF recoveries of alginate extracted from AGS.  相似文献   

18.
为了制备低成本、高色度的钴蓝颜料,本文以高岭土为载体,以Al2O3和Co3O4为主要原料,通过引入ZnO、CaO及MgO不同金属氧化物,采用固相法制备了高色度(CoxM1-xAl2O4)/高岭土复合颜料(M为Ca2+、Mg2+或Zn2+)。系统考察了研磨时间、煅烧温度、煅烧时间和不同金属氧化物掺量对复合颜料呈色性能的影响规律。研究表明,在煅烧温度1 200 ℃、研磨时间12 h和n(Co2+)/n(M2+)为3:2时,制得的复合颜料具有最好的呈色性能(L*=53.68,a*=7.58,b*=-62.89)。同时,引入不同的金属元素,可实现对复合颜料颜色的调控,引入Ca2+后,所制备的CoxCa1-xAl2O4复合颜料偏红相,而引入Zn2+后,所制备的CoxZn1-xAl2O4复合颜料偏绿相。通过相关表征,提出了复合颜料的呈色机理,在颜料制备过程中,引入与Co2+离子半径接近的Mg2+或Zn2+,Mg2+或Zn2+可进入CoAl2O4的四面体配位中,部分替代Co2+,形成MgAl2O4-CoAl2O4或ZnAl2O4-CoAl2O4的固溶体,而引入离子半径较大的Ca2+,形成CaAl2O4和CoAl2O4的均相混合物。最后,将制得复合颜料应用到有机硅耐热涂料中,可以明显提高有机硅涂料的热稳定性。  相似文献   

19.
在浸没式循环撞击流反应器中,以氨水为沉淀剂,用七水合硫酸亚铁和六水合三氯化铁为原料,采用共沉淀法制备了纳米四氧化三铁粒子。考察了搅拌转速、亚铁与三价铁物质的量比、反应温度和溶液pH对所得纳米四氧化三铁的分散性和粒径的影响。采用傅里叶红外光谱仪、透射电镜、X射线衍射仪等对制得的纳米粒子的结构和性能进行了表征。结果表明:用撞击流反应器制备纳米四氧化三铁粒子的最佳工艺条件:亚铁与三价铁物质的量比为1 ∶1,反应温度为40 ℃,搅拌转速为1 600 r/min,以氨水作沉淀剂,最佳pH控制在11.0左右。在上述条件下,可以制备出分散性好、纯度高、平均粒径为10 nm的四氧化三铁粒子。  相似文献   

20.
申星梅  李辽沙  武杏荣  王平  罗涛 《化工学报》2014,65(3):1104-1110
通过对镁铝离子共存硅酸体系中硅酸胶凝时间、单硅酸聚合反应速率以及凝胶热性能的研究,得出:在pH<;4的微酸性条件下,硅酸体系的胶凝时间随镁铝离子共存浓度的增大而减小,且铝离子在对硅酸体系的促凝过程中起主要作用。镁铝离子共存硅酸体系的单硅酸反应速率常数比不含金属离子硅酸体系的有所增大,计算得出MA0.1+0.1硅酸体系的单硅酸平均速率常数为:k0=7.28×10-4,k1=5.62×10-4。镁铝离子共存硅酸体系凝胶的晶化转变温度与晶型转变温度,相较于不含金属离子硅酸体系的均有所降低,根据热重曲线计算出MA0.1+0.1硅酸体系水合二氧化硅的化学式为:SiO2·0.556 H2O。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号