首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This is a study of the devolatilization of coal in a laboratory-scale bed of silica sand, fluidized with either air or N2 and electrically heated to 750 or 900°C. Coal particles (diameter 1.4–1.7 or 2.0–2.36 mm) were fed in batches to the surface of the bed and allowed to devolatilize in either an oxidizing atmosphere of air or inert N2. In the first case, combustion of the volatiles occurred, but there was only thermal decomposition (pyrolysis) in the second situation. The resulting chars were recovered and analyzed for composition and structure, so that comparisons could be made between the effects of devolatilization with combustion and of pyrolysis in an inert atmosphere. It was found that the fractions of C and H in the char were only slightly sensitive to the type of fluidizing gas used. The amount of nitrogen in the recovered char and also the devolatilization time showed no dependence on the type of fluidizing gas, whereas BET areas were slightly larger after combustion in air. It is concluded that these effects are small relative to other errors, inherent in experiments on coal combustion, so that chars prepared in a bed fluidized by hot N2 are very similar to those formed during coal combustion at nominally the same temperature. Equally, the overall composition of the volatile matter released during combustion in a fluidized bed is the same as in pyrolysis in nitrogen. The effects of other parameters, such as the temperature of the bed, the flow rate of the fluidizing gas and the size of the coal particles are also discussed in detail. It is concluded that most of the volatiles burn in a fluidized bed (at or less than 900°C) far away from the original coal particle. Also, NOx is in effect a primary product of devolatilization, being produced in appreciable amounts when coal is heated in inert N2. The ratio of C/N in the volatiles is found to be a constant during the latter stages of devolatilization, but beforehand at lower temperatures, carbon species are preferentially released. Overall, devolatilization of small particles (< 2.4 mm) in a fluidized bed at 900°C is kinetically controlled. The activation energy is small, being 15 ± 6 kJ/mol.  相似文献   

2.
《能源学会志》2020,93(5):1798-1808
The investigation on evolution of coal char structure during pressurized pyrolysis can reveal the combustion reactivity of coal char in thermal utilization at elevated pressure. In this study, Zhundong subbituminous coal was demineralized and a pressurized drop tube reactor (PDTR) was used to prepare coal char under different temperature and pressure conditions. The physicochemical structures of raw and demineralized coal chars were characterized by the application of nitrogen adsorption analyzer, automatic mercury porosimeter, and Fourier transform infrared spectroscopy (FTIR). The change mechanism of char infrared structure with pyrolysis pressure is revealed on the molecular level in this paper. The results show that the N2 adsorption quantity of raw coal char increases with the increase of pyrolysis temperature, while that of demineralized coal char decreases. Because of the difference in molecular volume and steric hindrance between aliphatic and aromatic structure in char, the increasing pressure has less inhibition effect on the escape of the former than the latter. With the increase of pyrolysis pressure, the combustion reactivity of char is related to the infrared structure at 700 and 800 °C while to macropore structure at 900 and 1000 °C.  相似文献   

3.
《能源学会志》2020,93(3):1064-1073
This study aims to investigate the effect of pyrolysis pressure on the physical and chemical structure characteristics and reactivity of subbituminous demineralized coal char. The pyrolysis experiments were studied under different pressures using a pressurized drop tube reactor (PDTR). Structural properties of coal chars were investigated by the application of scanning electron microscopy (SEM), nitrogen adsorption analyzer, automatic mercury porosimeter, and Raman spectroscopy, respectively. The Random Pore Model was used to determine kinetic parameters and intrinsic reactivity of chars. The specific pore volume of chars pyrolyzed at 900–1000 °C increased first and then decreased with pyrolysis pressure increasing, and the maximum value of the specific pore volume of chars occurred at 1.0 MPa. The degree of graphitization of chars deepened with the increase of temperature or pressure. Intrinsic activation energy of char-O2 was within the range of 126–134 kJ/mol. The intrinsic reactivity of char-O2 reaction showed strong correlation the Raman parameters with the change of pyrolysis conditions, and it suggested that the intrinsic reactivity of char-O2 reaction was mainly affected by aromatic ring structures rather than pore structures.  相似文献   

4.
《能源学会志》2020,93(4):1747-1754
The effect of ash on dielectric properties and micro-structure of high alkali coal at different temperature pyrolysis was studied, so as to provide theoretical basis for coal deep processing by microwave. An acid-washed method was adopted to remove ash in Zhundong coal for preparing coal chars at 700 °C–1300 °C. X-ray diffraction analysis was used to characterize the microcrystal structure. The thermal stability was characterized by thermogravimetric analyzer, and the dielectric properties were measured by a vector network analyzer. The results showed that when the pyrolysis temperature was below 1100 °C, the presence of ash hindered the development of carbon structure in raw coal char. The main reason is that the alkali metal oxides (K2O and Na2O) in the ash promoted the solution loss reaction during pyrolysis. The structure of the original carbon layer was damaged, thereby the graphitization degree, thermal stability and dielectric properties of raw coal char were weaker than the ash-free coal char. When the pyrolysis temperature reached 1300 °C, the minerals were completely melted. The reaction of phase transition of SiO2 in ash played a catalytic role on raw coal char structure, resulting in tighter arrangement of adjacent carbon layers. The raw coal char showed stronger dielectric properties and thermal stability.  相似文献   

5.
Comparative combustion studies were performed on particles of pulverized coal samples from three different ranks: a high-volatile bituminous coal, a sub-bituminous coal, and two lignite coals. The study was augmented to include observations on burning pulverized woody biomass residues, in the form of sugarcane bagasse. Fuel particles, in the range of 75–90 μm, were injected in a bench-scale, transparent drop-tube furnace, electrically-heated to 1400 K, where they experienced high-heating rates, ignited and burned. The combustion of individual particles in air was observed with three-color pyrometry and high-speed high-resolution cinematography to obtain temperature–time–size histories. Based on combined observations from these techniques, in conjunction to morphological examinations of particles, a comprehensive understanding of the combustion behaviors of these fuels was developed. Observed differences among the coals have been striking. Upon pyrolysis, the bituminous coal chars experienced the phenomena of softening, melting, swelling and formation of large blowholes through which volatile matter escaped. Combustion of the volatile matter was sooty and very luminous with large co-tails forming in the wake of the particle trajectories. Only after the volatile matter flames extinguished, the char combustion commenced and was also very luminous. In contrast, upon pyrolysis, lignite coals became fragile and experienced extensive fragmentation, immediately followed by ignition of the char fragments (numbering in the order of 10–100, depending on the origin of the lignite coal) spread apart into a relatively large volume. As no separate volatile matter combustion period was evident, it is likely that volatiles burned on the surface of the chars. The combustion of the sub-bituminous coal was also different. Most particles experienced limited fragmentation, upon pyrolysis, to several char fragments, with or without the presence of brief and low-luminosity volatile flames; other particles did not fragment and directly proceeded to char combustion. Finally combustion of bagasse was once again very distinctive. Upon pyrolysis, long-lasting, low-luminosity, nearly-transparent spherical flames formed around slowly-settling devolatilizing particles. They were followed by bright, short-lived combustion of the chars. Both volatiles and chars experienced shrinking core mode of burning. For all fuels, flame and char temperature profiles were deduced from pyrometric data and burnout times were measured. Combustion rates were calculated from luminous carbon disappearance measurements, and were compared with predictions based on published kinetic expressions.  相似文献   

6.
Emissions of nitrous oxide from combustion sources   总被引:8,自引:0,他引:8  
Nitrous oxide (N20) has recently become the subject of intense research and debate, because of its increasing concentrations in the atmosphere and its known ability to deplete the ozone layer and also to contribute to the greenhouse effect. There are both natural and anthropogenic sources for N2O; however, the man-made sources are increasing at a much higher rate than natural ones. Until very recently it was believed that the combustion of fossil fuels, especially coal, was the major contributing factor to these anthropogenic sources. For example, 30% of all N20 released into the atmosphere was once attributed to combustion sources, with 83% of the combustion sources coming from coal combustion. Correction of a recently discovered sampling artifact, whereby SO2, H2O and NO in combustion gases react in a sampling vessel to produce N2O, has revealed that, in fact, less than 5 ppm of N20 are found in most product gases from combustion systems. Fluidized bed coal combustors are the exception, though, yielding N2O levels of ca. 50ppm in their off-gases.

The gas-phase reactions of N20 in flames are reviewed first. It is clear that in most cases N20 is a very reactive intermediate, which is quickly destroyed before being emitted from a flame. The important homogeneous reactions removing N20 are thermal decomposition to N2 and O2 and also radical attack in e.g. N2O + H → N2 + OH. Nitrous oxide is formed from nitrogen-containing species by NO reacting with a radical derived from either HCN or NH3; the reactions are NCO + NO → N20 + CO and NH + NO → N20 + H. The levels of N2O observed are a balance betwen its rates of formation and destruction. It turns out that HCN is a more efficient precursor than NH3 at producing N20. The removal of N2O is fastest at high temperatures and in fuel-rich systems, where free hydrogen atoms are present in relatively large amounts.

When coal burns in a fluidized bed, most of the N2O detected is produced during devolatilization, rather than in the subsequent stage of char combustion. It is clear that HCN and NH3 are produced from nitrogenous material released during devolatilization; these two compounds give N20 when the volatiles burn. The burning of char, on the other hand, involves the chemi-sorption of O2 on to sites containing carbon or nitrogen atoms, followed by surface reaction, with one of the products being N20, in addition to CO, CO2 and NO. Fluidized coal combustors have temperatures around 900°C, which is low enough for the thermal decomposition of N2O to be relatively slow. In addition, the presence of the solid phase provides a large area for radical recombination, which in turn reduces the rate of removal of N2O by free radicals. Parametric studies of fluidized bed combustors have shown that factors such as: temperature, amount of excess air, carbon content and O/N ratio of the coal, all have a significant effect on N2O emissions. It is important to note that heterogeneous reactions with solids, such as CaO and char, can cause large decreases in the amount of N2O produced during the combustion of coal in a fluidized bed. In fact, there are several methods available for lowering the yields of N2O from fluidized bed combustors generally. Areas of uncertainty in the factors affecting N2O emissions from fluidized bed combustors are identified.  相似文献   


7.
In this study, different char based catalysts were evaluated in order to increase hydrogen production from the steam pyrolysis of olive pomace in two stage fixed bed reactor system. Biomass char, nickel loaded biomass char, coal char and nickel or iron loaded coal chars were used as catalyst. Acid washed biomass char was also tested to investigate the effect of inorganics in char on catalytic activity for hydrogen production. Catalysts were characterized by using Brunauer–Emmet–Teller (BET) method, X-ray diffraction (XRD) analyzer, X-ray fluorescence (XRF) and thermogravimetric analyzer (TGA). The results showed that the steam in absence of catalyst had no influence on hydrogen production. Increase in catalytic bed temperature (from 500 °C to 700 °C) enhanced hydrogen production in presence of Ni-impregnated and non-impregnated biomass char. Inherent inorganic content of char had great effect on hydrogen production. Ni based biomass char exhibited the highest catalytic activity in terms of hydrogen production. Besides, Ni and Fe based coal char had catalytic activity on H2 production. On the other hand, the results showed that biomass char was not thermally stable under steam pyrolysis conditions. Weight loss of catalyst during steam pyrolysis could be attributed to steam gasification of biomass char itself. In contrast, properties of coal char based catalysts after steam pyrolysis process remained nearly unchanged, leading to better thermal stability than biomass char.  相似文献   

8.
In this study, wheat straw pyrolysis was conducted in an entrained flow reactor at 900–1300 °C, and PM2.5 were sampled from the flue gas through a heated sampling system. Multi-phase PM2.5 including carbonaceous matter, potassium-containing particles, and ash particles, was separated and quantified using a thermogravimetric analyzer (TGA). The micro-morphologies and chemical compositions of these three phases were characterized by scanning electron microscopy (SEM), scanning transmission electron microscope (STEM), energy dispersive X-ray spectrometry (EDS), and X-ray diffraction (XRD). Results show that PM2.5 yields during biomass pyrolysis are in the range of 7–34 g/kg (dry-basis biomass) and increase with the increase of pyrolysis temperature. At low pyrolysis temperatures (900–1000 °C), the carbonaceous matter is dominated by char-carbon. When the pyrolysis temperature increase from 1000 °C to 1100 °C, the production of soot is greatly enhanced and soot becomes dominant in PM2.5, and the amorphous morphologies of soot are replaced by the concentric graphitic layers. With the further increasing in pyrolysis temperature, soot particles become more spherical and onion-like. Above 1100 °C, the KCl content in PM2.5 declines, which is because of the capture of KCl and the formation of low-melting potassium aluminosilicates in large char particles. At 1300 °C, the fragmentation of char particles is significantly strengthened, resulting in more ash in PM2.5.  相似文献   

9.
循环流化床锅炉飞灰中碳的形成机理   总被引:2,自引:1,他引:1  
通过对循环流化床(CFB)锅炉飞灰含碳量分布及飞灰残碳形态的测量、CFB燃烧温度下焦炭失活过程的试验研究以及流化床条件下煤颗粒燃烧过程的分析.探讨了循环流化床锅炉飞灰中碳的形成机理.结果表明:实际运行的CFB锅炉飞灰中含碳量具有明显的不均匀性,残碳集中于25~50 μm的飞灰颗粒内;真实密度和XRD测量均表明,焦炭失活的2个条件是温度和时间,温度高于800℃,焦炭失活开始发生,并且随着时间的增加,失活程度提高;焦炭颗粒长时间停留在主循环回路中,反应活性下降,由于颗粒的碎裂和磨耗,形成了飞灰中粒径较小的残碳;煤中的细小煤粒首次通过炉膛时未燃尽且未被分离器收集,形成了飞友中较大颗粒的残碳.  相似文献   

10.
Fast pyrolysis of wheat straw and rice husk was carried out in an entrained flow reactor at high-temperatures (1000–1500) °C. The collected char was analyzed using X-ray diffractometry, N2-adsorption, scanning electron microscopy, particle size analysis with CAMSIZER XT, 29Si and 13C solid-state nuclear magnetic resonance spectroscopy and thermogravimetric analysis to investigate the effect of inorganic matter on the char morphology and oxygen reactivity. The silicon compounds were dispersed throughout the turbostratic structure of rice husk char in an amorphous phase with a low melting temperature (≈730 °C), which led to the formation of a glassy char shell, resulting in a preserved particle size and shape of chars. The high alkali content in the wheat straw resulted in higher char reactivity, whereas the lower silicon content caused variations in the char shape from cylindrical to near-spherical char particles. The reactivities of pinewood and rice husk chars were similar with respect to oxidation, indicating less influence of silicon oxides on the char reactivity.  相似文献   

11.
This research focuses on the isothermal and non-isothermal CO2 gasification of an algal (Chlorella) char prepared via two different thermal processing systems, i.e. conventional and microwave-assisted pyrolysis. It was found that chars prepared via microwave irradiation showed higher CO2 gasification reactivity than that of chars prepared via the conventional method. Meanwhile, the activation energy of microwave char was found to be 127.89 kJ/mol, which was 46.3 kJ/mol lower than that of conventional char, indicating improved reactivity of microwave char. The systematic characterisation of both conventional and microwave chars shows that the higher reactivity of microwave char could be attributed to its large BET surface area, low crystalline index and high active sites. In addition, it was found that microwave heating contributed to high reactivity of chars through generating large amount of primary char, the formation of hot spot and high specific surface area and pore volume. Results of co-gasification under isothermal conditions revealed the existence of greater synergistic effects between coal char and microwave algae char than those of coal char and conventional algae char. Furthermore, based on the relative Rs (average gasification rate), a novel index proposed to quantify the interactions in co-gasification process, Australian coal char/microwave assisted char blend experienced 10% higher interactions compared to Australian coal char/conventional assisted char blend.  相似文献   

12.
The nature of mineral matter in coal determines its transformation into ash during combustion and the nature of resulting ash (e.g. chemical composition and particle size distribution), and subsequently influences the ash deposition behaviour. The behaviour of mineral matter is primarily influenced by two parameters: the mineral grain size, and whether the mineral grains are within the coal matrix or not. Computer-controlled scanning electron microscopy (CCSEM) of coal provides such information on mineral matter in coal. CCSEM data are, therefore, processed to predict the fouling and slagging characteristics of several coals. The fraction of basic oxides in each mineral grain may be considered as an indicator of stickiness of the corresponding ash particle due to formation of low melting compounds. The cumulative mass fraction of mineral grains with certain basic oxides or viscosity of resulting ash particles from included and excluded minerals are proposed as alternative indices for ash deposition.

The excluded mineral matter is in equilibrium with the combustion flue gases at the gas temperatures, whereas the included minerals are in equilibrium with the atmosphere within char at the burning char particle temperature. It is predicted from thermodynamic calculations based on this understanding that almost all the evaporation is either from the included mineral matter or from the atomically dispersed minerals in coal. This is due to the high temperature and reducing atmosphere inside the char particle. The release of the evaporated species is controlled by diffusion through the burning char particle and, therefore, may be estimated theoretically. The amount of mineral matter that is vaporized may then be related to fouling, whereas the melt phase present on the surface of large ash particles may be related to slagging. The theoretical speculations on the physical character of ash derived from these indices are compared with the experimental data obtained from combustion of coals in a drop-tube furnace.  相似文献   


13.
选取5种煤焦,在一个小型循环流床上进行燃烧,研究N2O的生成,并就这几种煤焦对N2O的分解特性进行了实验,用液氮吸附法对5种煤焦的微观结构进行了分析,就N2O在煤焦内部的扩散机理、煤焦的微观特性对煤焦燃烧生成N2O或分解N2O的特性的影响进行了分析和讨论。  相似文献   

14.
Research on hydrogen production from coal gasification is mainly focused on the formation of CO and H2 from coal and water vapor in high-temperature environments. However, in the process of underground coal gasification, the water gas shift reaction of low-temperature steam will absorb a lot of heat, which makes it difficult to maintain the combustion of coal seams in the process of underground coal gasification. In order to obtain high-quality hydrogen, a pure oxygen-steam gasification process is used to improve the gasification efficiency. And as the gasification surface continues to recede, the drying, pyrolysis, gasification and combustion reactions of underground coal seams gradually occur. Direct coal gasification can't truly reflect the process of underground coal gasification. In order to simulate the hydrogen production laws of different coal types in the underground gasification process realistically, a two-step gasification process (pyrolysis of coal followed by gasification of the char) was proposed to process coal to produce hydrogen-rich gas. First, the effects of temperature and coal rank on product distribution were studied in the pyrolysis process. Then, the coal char at the final pyrolysis temperature of 900 °C was gasified with pure oxygen-steam. The results showed that, the hydrogen production of the three coal chars increased with the increase of temperature during the pyrolysis process, the hydrogen release from Inner Mongolia lignite and Xinjiang long flame coal have the same trend, and the bimodality is obvious. The hydrogen release in the first stage mainly comes from the dehydrogenation of the fat side chain, and the hydrogen release in the second stage mainly comes from the polycondensation reaction in the later stage of pyrolysis, and the pyrolysis process of coal contributes 15.81%–43.33% of hydrogen, as the coal rank increases, the hydrogen production rate gradually decreases. In the gasification process, the release of hydrogen mainly comes from the water gas shift reaction, the hydrogen output is mainly affected by the quality and carbon content of coal char. With the increase of coal rank, the hydrogen output gradually increases, mainly due to the increasing of coal coke yield and carbon content, The gasification process of coal char contributes 56.67–84.19% of hydrogen, in contrast, coal char gasification provides more hydrogen. The total effective gas output of the three coal chars is 0.53–0.81 m3/kg, the hydrogen output is 0.3–0.43 m3/kg, and the percentage of hydrogen is 53.08–56.60%. This study shows that two-step gasification under the condition of pure oxygen-steam gasification agent is an efficient energy process for hydrogen production from underground coal gasification.  相似文献   

15.
A one-dimensional transient single coal particle combustion model was proposed to investigate the characteristics of single coal particle combustion in both O2/N2 and O2/CO2 atmospheres under the fluidized bed combustion condition. The model accounted for the fuel devolatilization, moisture evaporation, heterogeneous reaction as well as homogeneous reactions integrated with the heat and mass transfer from the fluidized bed environment to the coal particle. This model was validated by comparing the model prediction with the experimental results in the literature, and a satisfactory agreement between modeling and experiments proved the reliability of the model. The modeling results demonstrated that the carbon conversion rate of a single coal particle (diameter 6 to 8 mm) under fluidized bed conditions (bed temperature 1088 K) in an O2/CO2 (30:70) atmosphere was promoted by the gasification reaction, which was considerably greater than that in the O2/N2 (30:70) atmosphere. In addition, the surface and center temperatures of the particle evolved similarly, no matter it is under the O2/N2 condition or the O2/CO2 condition. A further analysis indicated that similar trends of the temperature evolution under different atmospheres were caused by the fact that the strong heat transfer under the fluidized bed condition overwhelmingly dominated the temperature evolution rather than the heat release of the chemical reaction.  相似文献   

16.
The paper provides an overview of current studies on the behaviour of coal during devolatilization, especially the experimental studies and modelling efforts on the formation of char structure of bituminous coals in the open literature. Coal is the most abundant fossil fuel in the world. It dominates the energy supply in the future and plays an increasing role particularly in the developing countries. Coal utilization processes such as combustion or gasification generally involve several steps: i.e., the devolatilization of organic materials, homogeneous reactions of volatile matter with the reactant gases and heterogeneous reactions of chars with the reactant gases. The devolatilization process exerts its influence throughout the life of the solid particles from the injection to the burnout, therefore is the most important step which needs to be understood. When volatile matter is generated, the physical structure of a char changes significantly during the devolatilization, some accompanying a particle's swelling. The complexity of a char's structure lies in the facts that the structure of a char itself is highly heterogenous inside an individual particle and between different particles and the chemistry of a char is strongly dependent on the raw coal properties. A char's structure is strongly dependent on the heating conditions such as temperature, heating rate and pressure. Understanding the swelling of coal and the formation of char's pore structure during the devolatilization of pulverized coal is essential to the development of advanced coal utilization technologies. During combustion and gasification of pulverized coal, the behaviour of individual particles differs markedly due to the variation of their maceral composition. Particles with different maceral constituents generate different types of char structure. The structure of a char has a significant impact on its subsequent heterogeneous reactions and ash formation. The review also covers the most recent studies carried out by the authors, including the experimental observations of the thermoplastic behaviour of individual coal particles from the density fractions using a single-particle reactor, the experimental analysis on chars prepared in a drop tube furnace using the density-separated coal samples, the development of a mathematical model for the formation of char's pore structure based on a simplified multi-bubble mechanism and the investigation on the effect of pressure on char formation in a pressurized entrained-flow reactor.  相似文献   

17.
In pulverized coal particle combustion, part of the ash forms the ash film and exerts an inhibitory influence on combustion by impeding the diffusion of oxygen to the encapsulated char core, while part of the ash diffuses toward the char core. Despite the considerable ash effects on combustion, the fraction of ash film still remains unclear. However, the research of the properties of cenospheres can be an appropriate choice for the fraction determination, being aware that the formation of cenospheres is based on the model of coal particles with the visco-plastic ash film and a solid core. The fraction of ash film X is the ratio of the measuring mass of ash film and the total ash in coal particle. In this paper, the Huangling bituminous coal with different sizes was burnt in a drop-tube furnace at 1273, 1473, and 1673 K with air as oxidizer. A scanning electron microscope (SEM) and cross-section analysis have been used to study the geometry of the collected cenospheres and the effects of combustion parameters on the fraction of ash film. The results show that the ash film fraction increases with increasing temperature and carbon conversion ratio but decreases with larger sizes of coal particles. The high fraction of ash film provides a reasonable explanation for the extinction event at the late burnout stage. The varied values of ash film fractions under different conditions during the dynamic combustion process are necessary for further development of kinetic models.  相似文献   

18.
An aerosol-based method was proposed and developed to characterize particles fragmented from biomass chars during oxidation. The chars were prepared from both wood and miscanthus pellets under various pyrolysis conditions. Char fragments with aerodynamic diameters in the range of 0.5–10 μm were suspended and transported in a reactive gas through an aerosol reactor, which was heated by an electric oven. The oxidation of char particles in the reactor was investigated by determining on-line the particle size distributions before and after passage through the reactor using an aerodynamic particle sizer (APS) spectrometer. The interpretation of APS data was evaluated by both experiments and models in which the fine char particles were assumed to keep either constant density or constant diameter during the oxidation process. The results indicate that the aerosol-based method can be used to determine reaction kinetics of char particles in the high-temperature range, where oxidation is normally controlled by diffusion limitation if measuring with the conventional techniques. The application of the aerosol method indicated that high pyrolysis temperature and prolonged retention time will reduce the char reactivity.  相似文献   

19.
In view of the significance of the properties and reactions of chars during the process of smoldering combustion, a series of cellulosic chars was prepared at temperatures ranging from 340 to 600°C and their pyrolysis and combustion properties were studied by thermal analysis. Correlation of the resulting data with the recently available quantitative information on the chemical composition of different chars indicates that solid-phase combustion of these materials proceeds in two distinct exothermic stages. The first exotherm, at ~360°C, is associated with combustion of the aliphatic components, and the second exotherm, at ~520°C, is due to oxidation of the aromatic components. The chars formed at lower temperatures have a high concentration of aliphatic groups and burn mainly in the first exotherm. As the temperature of the char formation increases, so does the aromaticity, and the combustion is shifted to the higher temperature range.  相似文献   

20.
Anthracite could be burnt efficiently at high temperature utilizing oxy-coal technology. To clarify the effects of temperature and atmosphere on char porosity characteristics, char morphology, fuel-N conversion, and reducing products release, rapid pyrolysis and CO2 gasification of anthracite was carried out in a high temperature entrained-flow reactor to simulate the condition in a pulverized coal furnace. Developed pore structure was formed in the gasification chars, which could be contributed to charCO2 reaction at high temperatures. More mesopores were formed in internal carbon skeleton and retained against collapse and coalescent for gasification chars than pyrolysis chars. Compared with pyrolysis char, smoother and denser surface was observed in gasification char with the irregular bulges disappeared due to the destruction of external carbon skeleton. Char-N could be oxidized to NO in CO2 atmosphere and then reduced to N2 by (CN) on the char surface. Char-N release was greatly promoted due to gasification reaction along with poly-condensation at high temperature; and the preact release of char-N would result in a larger portion of NOx reduction in the following reduction zone with the oxygen-staging combustion technology compared with that in air-staging combustion. Complementally, homogeneous reduction in NOx emission would play a minor effect for anthracite in oxy-coal combustion because of the deficiency of CH4 and HCN, especially at high temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号