首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
摩擦纳米发电机(Triboelectric Nanogenerator, TENG)是一种将微小机械能转化为电能并加以收集利用的绿色能源器件, 具有活性材料种类广泛、器件结构简单以及易于集成等特点。较低的输出功率密度是目前阻碍其实际应用的主要因素之一。如何通过材料组分设计与制备提高其输出功率密度及能量转化效率, 是目前该领域研究者关注的热点问题。在摩擦纳米发电机常用的活性材料-高分子聚合物中引入功能性填料是一种简便且高效的改性方法, 不仅能够对薄膜摩擦电性能进行优化、提高输出性能, 还能够赋予其新功能, 可谓一举多得。因此, 此类复合薄膜已广泛应用于TENG领域, 例如TiO2、SiO2、BaTiO3、ZnSnO3、MoS2、石墨烯、二维黑磷等无机填料对复合材料的性能均有不同程度的优化, TENG的输出功率密度最高提升了数十倍。本文结合国内外研究现状, 按照填料对基体材料表面性能以及电学性能优化作用两个方面进行阐述, 综述了复合材料薄膜在摩擦纳米发电机中的研究进展, 并展望了未来复合材料用于提高TENG输出性能研究的发展方向。  相似文献   

2.
The ocean holds vast potential as a renewable energy source, but harnessing its power has been challenging due to low-frequency and high-amplitude stimulation. However, hybrid nanogenerators (HNGs) offer a promising solution to convert ocean energy into usable power efficiently. With their high sensitivity and flexible design, HNGs are ideal for low-frequency environments and remote ocean regions. Combining triboelectric nanogenerators (TENGs) with piezoelectric nanogenerators (PENGs) and electromagnetic nanogenerators (EMGs) creates a unique hybrid system that maximizes energy harvesting. Ultimately, hybrid energy-harvesting systems offer a sustainable and reliable solution for growing energy needs. This study provides an in-depth review of the latest research on ocean energy harvesting by hybrid systems, focusing on self-powered applications. The article also discusses primary hybrid designs for devices, powering self-powered units such as wireless communication systems, climate monitoring systems, and buoys as applications. The potential of HNGs is enormous, and with rapid advancements in research and fabrication, these systems are poised to revolutionize ocean energy harvesting. It outlines the pros and cons of HNGs and highlights the major challenges that must be overcome. Finally, future outlooks for hybrid energy harvesters are also discussed.  相似文献   

3.
聚酰亚胺(PI)在防腐蚀方面前景良好,但目前国内报道不多。采用静电喷涂的方法在N80钢表面制备了一种聚酰亚胺防腐蚀涂层。通过盐雾试验、浸泡试验评价了涂层在不同腐蚀环境中的耐蚀性能;通过硬度测试和抗冲击试验评价了涂层的力学性能;采用红外光谱、电化学方法交流阻抗、扫描电镜(SEM)、能谱(EDS)等方法研究了涂层的失效过程。结果表明:涂层耐盐雾性能良好,3 080 h盐雾试验后仅表面发生微观物理破坏,在人工划痕处产生少量腐蚀产物;涂层在3.5%NaCl溶液和25%HCl溶液中耐蚀性能优异,电化学性能不随时间发生显著变化,但在涂层表面产生少量微观缺陷;涂层力学性能良好,但提高腐蚀介质温度会使得力学性能下降。  相似文献   

4.
Given the ability to convert various ambient unused mechanical energies into useful electricity, triboelectric nanogenerators (TENGs) are gaining interest since their inception. Recently, ionogel-based TENGs (I-TENGs) have attracted increasing attention because of their excellent thermal stability and adjustable ionic conductivity. However, previous studies on ionogels mainly pursued the device performance or applications under harsh conditions, whereas few have investigated the structure–property relationships of components to performance. The results indicate that the ionogel formulation—composed of a crosslinking monomer with an ionic liquid—affects the conductivity of the ionogel by modulating the cross-link density. In addition, the ratio of cross-linker to ionic liquid is important to ensure the formation of efficient charge channels, yet increasing ionic liquid content delivers diminishing returns. The ionogels are then used in I-TENGs to harvest water droplet energy and the performance is correlated to the ionogels structure–property relationships. Improvement of the energy harvesting is further explored by the introduction of surface polymer brushes on I-TENGs via a facile and universal method, which enhances droplet sliding by means of ideal surface contact angle hysteresis and improves its anti-reflective properties by employing the I-TENG as a surface covering for solar cells.  相似文献   

5.
采用硬脂酸对镁合金铈钒转化膜进行改性处理。利用扫描电镜、接触角测试仪、X射线能谱仪和红外光谱仪对改性膜层的微观结构、表面润湿性能以及化学组成进行分析,并通过防黏附和电化学实验研究膜层的自清洁行为以及耐腐蚀性能。结果表明:硬脂酸对铈钒转化膜的改性处理,不仅对转化膜的裂纹起到修补作用,并且通过接枝硬脂酸的疏水长链使改性膜层表面转化为超疏水性。8h常温浸泡后得到的改性膜层,表面接触角达154.6°,并表现出良好的自清洁性;耐腐蚀能力与原铈钒转化膜相比,膜层电阻R_(coat)提高25倍,自腐蚀电流密度i_(corr)降低2个数量级,其耐蚀性能得到显著提升。  相似文献   

6.
Triboelectric nanogenerators (TENGs) have attracted increasing attention because of their excellent energy conversion efficiency, the diverse choice of materials, and their broad applications in energy harvesting devices and self-powered sensors. New materials have been explored, including green materials, but their performances have not yet reached the level of that for fluoropolymers. Here, a high-performance, fully green TENG (FG-TENG) using cellulose-based tribolayers is reported. It is shown that the FG-TENG has an output power density of above 300 W m−2, which is a new record for green-material-based TENGs. The high performance of the FG-TENG is due to the high positive charge density of the regenerated cellulose. The FG-TENG is stable after more than 30 000 cycles of operations in humidity of 30%–84%. This work demonstrates that high-performance TENGs can be made using natural green materials for a broad range of applications.  相似文献   

7.
In this work, a method to improve the protection against corrosion of porous sintered stainless steel is presented. It is based on the electrodeposition of polypyrrole(PPy) layers doped with a large size counterion such as dodecylbenzenesulphonic acid(DBSA), a conducting polymer with high corrosion resistance and good biocompatibility. The efficacy of PPy coating depends on the adequate adhesion between the metal substrate and the coating layer. The protection against corrosion has been tested using 316 L stainless steel(SS) powder sintered at different conditions to evaluate the effect of the sintering atmosphere(nitrogen and vacuum) and cooling rates(furnace and water) on corrosion resistance, while wrought 316 L SS has been used as reference material. In addition, two electrochemical deposition techniques have been tested to select the most adequate. Open circuit potential evolution, anodic polarization measurements and electrochemical impedance spectra have been used to evaluate corrosion protection in phosphate buffer saline medium. It has been evidenced that a more homogeneous and stable coating was obtained in the case of porous stainless steel. The corrosion potential shifted to nobler values and the anodic polarization branch became more stable. Coated porous samples have a good passivation performance with a lower stable passive current density and a higher breakdown potential. The transfer electronic resistance and the impedance module increase more than one order of magnitude. Therefore,the porosity of sintered stainless steel is seen as an advantage for the improvement of the adherence of the PPy coatings. The best corrosion protection is found for samples sintered in nitrogen and water-cooled.  相似文献   

8.
The purpose of this study is to synthesize and characterize nanosized titania (TiO2), zinc oxide (ZnO), and its composite coating on Ti–6Al–4V to enhance its corrosion protection behavior in Ringer's solution. Nanosized powders of TiO2 and ZnO was characterized by Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction (XRD), and scanning electron microscopy - energy dispersive atomic spectroscopy (SEM-EDAX) analysis. As a result of antibacterial activity, both ZnO and TiO2/ZnO have produce remarkable inhibition zone on Escherichia coli. The antibacterial activity of composites are due to the combined effect of ZnO on TiO2. The adherence and surface uniformity of TiO2/ZnO composite film on titanium implant was examined by optical microscopy and Vickers microhardness test. Corrosion resistant behavior of the coating on titanium implant was investigated by tafel polarization and impedance analysis. The composite coatings on Ti–6Al–4V have produced improved corrosion resistance with a pronounced shift in the anodic corrosion potential (Ecorr) with a corresponding less corrosion current density (Icorr) compared to monophase coating. Similar results have been obtained for impedance analysis which indicated a reduction in double layer capacitance (Cdl) and with enhancement in charge transfer resistance (Rct). These observations suggest improved corrosion resistance property of TiO2/ZnO composite coating on Ti–6Al–4V.  相似文献   

9.
Magnesium(Mg)alloys have attracted considerable research attention as potential biocompatible implant materials.However,the major barriers to the extended use of such medical devices are the possibility of high corrosion rate and implantassociated infections.To solve them,a novel polyacrylic acid(PAA)/gentamicin sulfate(GS)-hydroxyapatite(HAp)coating was synthesized by a one-step hydrothermal deposition method.Characteristics of functional coatings were investigated by SEM,FTIR and XRD.Corrosion properties of samples were evaluated by electrochemical and hydrogen evolution tests.Antibacterial activities of the coatings against Staphylococcus aureus(S.aureus)were measured by the plate-counting method.Results showed that the as-prepared HAp coating with dense and flawless morphologies could not only enhance the corrosion resistance of Mg alloys,but also improve the adhesion strength between the HAp coating and the substrate.In addition,the induction of the apatite coating during immersion confirmed the excellent mineralization ability of the HAp coating.Moreover,the obtained HAp coati ng possessed antibacterial properties and could prolong the release of GS.Thus,the PAA/GS-HAp coated Mg alloy could serve as a better candidate for biomedical applications with good anti-corrosion and antibacterial properties.  相似文献   

10.
The protection of rusted carbon steel in acid corrosion environments is of great significance for equipment to keep safe operation.In this work,we presented a method to protect the rusted steel by ru st conversion treatment and epoxy coating.Tannic acid was selected as rust conversion agent.Tannic acid,D-limonene and nano-ZrO2were used to improve the corrosion resistance of epoxy coatings.The Raman spectra,Xray diffraction and 3 D confocal images were used to characterize the rust conversion reaction.Ad hesion test showed that the loss of wet adhesion of the optimal coating was relatively low due to the addition of tannic acid,limonene and nano-ZrO(2).The corrosion resistance of five different coatings was investigated by scanning electron microscopy(SEM)and electrochemical analysis.Results show that after 264 h acid immersion,the low frequency resistance of the optimal coating consisting of rust conversion treatment and additives is 107Ωcm2,three orders magnitude higher than that of the pristine coating.Moreover,SEM indicates that the optimal coating possesses a smooth surface and an unbroken interface between substrate and coating.Accordingly,the corrosion-resistant mechanism of the hybrid coating is proposed.  相似文献   

11.
目的 静电纺丝纳米纤维因具有可定制的微纳结构、高的比表面积和孔隙率等优点,在摩擦纳米发电机(TENG)领域应用广泛,归纳总结静电纺丝纳米纤维的最新进展对TENG发展具有重要意义。方法 本文系统介绍静电纺丝纳米纤维摩擦电材料的发展和特点,重点描述基于静电纺丝纳米纤维摩擦电材料的TENG在不同场景中的应用。结果 静电纺丝纳米纤维材料因制备方便、电性能好及可扩展性好等独特优势,在TENG中应用广泛。结论 利用静电纺丝纳米纤维作为TENG摩擦电材料,在能量收集、自供电传感器及可穿戴电子等方面具有很大应用前景,未来可拓展到智能包装与印刷等领域。  相似文献   

12.
The corrosion resistance of 2024 Al and SiC particle reinforced 2024 Al metal matrix composite(SiCp/2024Al MMC) in 3.5% NaCl solution was investigated with electrochemical method and immersion test, and the corrosion protection of sulfuric acid anodized coatings on both materials was evaluated by electrochemical impedance spectroscopy.The results showed that the SiCp/2024AlMMC is more susceptible to corrosion than its matrix alloy in 3.5% NaCl.For 2024Al,the anodized coating provides excellent corrosion resistance to 3.5%NaCl.The anodized coating on the SiCp/2024Al provides satisfactory corrosion protection,but it is not as effective as that for 2024Al because the structure of the anodized layer is affected by the SiC particulates.  相似文献   

13.
我国海洋工程装备制造业正处在生存与发展的关键阶段,防腐涂层是降低基材腐蚀速率、提升其服役寿命最有效的方式之一。导电聚合物涂层由于其绿色环保、制备简单等优点及独特的导电与防腐机制,使其在金属腐蚀防护领域得到了广泛的应用。本文归纳总结了导电聚合物涂层的防腐机制,介绍了采用化学氧化和电化学合成两种方法制备导电聚合物涂层的现状,重点阐述了导电聚合物涂层的掺杂改性、共聚改性、分层设计3种改性技术对涂层耐蚀性能的提升效果,最后提出了导电聚合物涂层在腐蚀防护领域可能存在的研究热点和发展趋势。  相似文献   

14.
贾营坤  陈培  张青红  孙静 《无机材料学报》2017,32(12):1257-1263
将高温热还原氧化石墨烯(TRGO)作为二维纳米填料添加到聚酰亚胺(PI)聚合物基质中, 制备了不同质量分数的TRGO/PI纳米复合耐蚀涂层, 采用交流阻抗谱和动电位极化曲线评估了涂层在模拟海水(3.5wt%NaCl溶液)中的电化学腐蚀行为。结果表明: 与纯PI涂层相比, 添加TRGO可以显著提高涂层的电阻和腐蚀防护效率; 当TRGO的添加量为0.3wt%时, 对涂层耐蚀性能的增强效果最好, 最大涂层电阻为1.3176×106 Ω, 最高腐蚀防护效率可达到99.65%, 其防蚀增益与片层结构TRGO的物理阻隔性能有关。  相似文献   

15.
舰船高性能防腐蚀防污涂料研究进展   总被引:1,自引:0,他引:1  
简要论述了海洋防腐蚀防污涂料的发展历史和研究现状,重点论述了舰船高性能防腐蚀防污涂料的最新研究进展。有机锡自抛光防污涂料被禁止使用之后,基于丙烯酸锌、丙烯酸铜和丙烯酸硅烷酯的自抛光防污涂料得到了广泛应用。基于含防污功能基团树脂的防污涂料、基于降解树脂的防污涂料以及基于表面结构特性的防污涂料技术成为当前防污涂料研究的热点。文中详细报道了降解树脂的结构对降解性能及力学性能影响规律,以及表面结构特性对污损释放型防污涂料防污性能的影响规律。随着环境保护法规的日趋严格,防腐蚀涂料向无溶剂(或高固体)、长效方向发展。报道了提高涂层的湿态附着力和致密性的方法,采用该方法可以大幅提高涂层的力学性能和耐蚀性能,满足了远洋和深海装备发展需求。  相似文献   

16.
甘霞云  黄文质  朱玲  王震 《材料导报》2017,31(Z2):307-312
树脂基复合材料因具有综合成本低、减重性能好、比强度高、比刚度高、耐腐蚀和性能可设计等优点,在航空航天领域已广泛用于替代现有的部分金属部件;然而树脂基复合材料较差的抗氧化与耐磨损性能以及较低的使用温度限制了其更广泛的应用。综述了树脂基复合材料表面功能防护涂层的国内外研究进展,探讨了不同涂层制备方法、防护性能及其失效机理,为未来涂层的研究提供基础,以解决涂层制备工艺及其服役寿命问题。  相似文献   

17.
Triboelectric nanogenerator (TENG) has attracted attention for flexible electronics in the past decade. MXene is gradually applied in TENGs for performance enhancement, but the surface triboelectrification mechanism still needs to be further investigated experimentally. Herein, an experimental approach of regulating MXene fluorine groups by alkalization as a contrast to validate the mechanism is proposed. The MXene film and alkalized MXene film are studied to exploit the surface state. Compared with alkalized MXene-based TENGs, MXene-based TENG obtains enhancement in open-circuit voltage, short-circuit current, and output power by 4.1 times, 4.6 times, and even 136.6 times, respectively. The excellent performance enables flexible sensing and energy harvesting. Notably, this work reveals MXene surface triboelectrification mechanism and might motivate a new approach for TENG performance enhancement.  相似文献   

18.
AZ91D镁合金表面植酸转化处理   总被引:4,自引:1,他引:3  
为了进一步优化镬合金表面植酸转化膜的性能,通过正交试验获得了最优工艺,制备了耐蚀性优良的转化膜.采用扫描电子显微镜和能谱仪对转化膜的微观形貌和成分进行了分析,通过点滴试验、极化曲线和电阻抗谱对植酸转化膜的耐腐蚀性能进行了研究.结果表明:植酸转化膜主要由Mg,AJ,O,P,C和Na元素组成;膜层可显著改善镁合金基体的耐蚀...  相似文献   

19.
We have investigated the improvement of the corrosion resistance of metal products using a SiCN coating deposited by hot-wire chemical vapor deposition (HWCVD). We used brass as a metal product. SiCN coated brass was immersed in a 10% sulfuric acid solution for one week as a corrosion resistance test. It was found that the corrosion resistance of the brass was improved by the SiCN coating. Moreover, it was found that the corrosion resistance was considerably improved by an NH3 radical treatment prior to the deposition of the SiCN coating.  相似文献   

20.
铝合金阳极化氟碳保护涂料的研究   总被引:4,自引:0,他引:4  
现有阳极化保护涂料普遍存在耐酸性和弹性差的缺点,为此,采用丙烯酸含氟单体、丙烯酸单体、丁苯橡胶(SBS)通过自由基共聚的方法合成了氟碳树脂,获得了一种耐酸、高弹的铝合金阳极化涂料.对树脂的红外光谱分析表明,丙烯酸含氟单体参与了共聚反应.通过原位共聚的方法引入了纳米二氧化钛.随着氟含量的提高,涂层的耐甲乙酮擦拭性、耐酸性、耐沸水附着力、耐人工老化等性能提高,当氟含量超过6%时涂层的附着力下降;纳米TiO2的引入使涂层的耐盐雾性、抗拉强度明显提高;当固体含量为25%,msbs/m单体=4%时,丁苯橡胶的引入,涂层在柔韧性、伸长率、耐磨性、冲击强度方面均有所提高.氟碳丙烯酸保护涂料能够满足铝合金阳极化绝缘保护的要求.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号