首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
风力机的选型是风电场建设的重要内容,它对风电场建设造价、投产后的发电量以及运行维护成本等有直接影响。文章在给定风资源的情况下,综合考虑风电场的容量系数和实际发电量,以风力机性能指数作为选型的依据,针对采用常规方法进行风力机参数线性化求解的缺陷,采用智能化的改进粒子群算法对风力机参数进行寻优。与常规计算方法相比,该方法寻得的风力机性能指数更优。结合具体实例计算候选机型的风速加权标准差,选出最优风力机。该研究结果为风电场的风力机选型提供了一种有效可行的方法,具有一定的应用参考价值。  相似文献   

2.
In order to study the effect of vertical staggering in large wind farms, large eddy simulations (LES) of large wind farms with a regular turbine layout aligned with the given wind direction were conducted. In the simulations, we varied the hub heights of consecutive downstream rows to create vertically staggered wind farms. We analysed the effect of streamwise and spanwise turbine spacing, the wind farm layout, the turbine rotor diameter, and hub height difference between consecutive downstream turbine rows on the average power output. We find that vertical staggering significantly increases the power production in the entrance region of large wind farms and is more effective when the streamwise turbine spacing and turbine diameter are smaller. Surprisingly, vertical staggering does not significantly improve the power production in the fully developed regime of the wind farm. The reason is that the downward vertical kinetic energy flux, which brings high velocity fluid from above the wind farm towards the hub height plane, does not increase due to vertical staggering. Thus, the shorter wind turbines are effectively sheltered from the atmospheric flow above the wind farm that supplies the energy, which limits the benefit of vertical staggering. In some cases, a vertically staggered wind farm even produced less power than the corresponding non vertically staggered reference wind farm. In such cases, the production of shorter turbines is significantly negatively impacted while the production of the taller turbine is only increased marginally.  相似文献   

3.
With the increasing demand for wind energy, it is important to be able to understand and predict the available wind resources. To that end, the present wind tunnel study addresses the flow in the induction and entrance region of wind farms through particle image velocimetry, with focus on differences between actuator disks and two-bladed rotating wind turbine models. Both staggered and aligned farm layouts are examined for three different incoming wind directions. For each layout, 69 disks or turbines are used, and the field of view ranges from 12 rotor diameters upstream of the farms to 8 diameters downstream of the first row. The results show that the induction, or blockage effect, is higher for the disks, even though the thrust (or drag) coefficient is the same. In contrast, the wake is stronger downstream of the turbines. The orientation and layout of the farm do not have a major impact on the results. Modal decomposition of the flow shows that the flow structure similarity between the disk and turbines improves downstream of the second row of wake generating objects, indicating that the substitution of wind turbines by actuator disks is more appropriate for wind farms than for the investigation of single wakes.  相似文献   

4.
Wei Tian  Ahmet Ozbay  Hui Hu 《风能》2018,21(2):100-114
An experimental investigation was conducted for a better understanding of the wake interferences among wind turbines sited in wind farms with different turbine layout designs. Two different types of inflows were generated in an atmospheric boundary layer wind tunnel to simulate the different incoming surface winds over typical onshore and offshore wind farms. In addition to quantifying the power outputs and dynamic wind loads acting on the model turbines, the characteristics of the wake flows inside the wind farms were also examined quantitatively. After adding turbines staggered between the first 2 rows of an aligned wind farm to increase the turbine number density in the wind farm, the added staggered turbines did not show a significant effect on the aeromechanical performance of the downstream turbines for the offshore case. However, for the onshore case, while the upstream staggered turbines have a beneficial effect on the power outputs of the downstream turbines, the fatigue loads acting on the downstream turbines were also found to increase considerably due to the wake effects induced by the upstream turbines. With the same turbine number density and same inflow characteristics, the wind turbines were found to be able to generate much more power when they are arranged in a staggered layout than those in an aligned layout. In addition, the characteristics of the dynamic wind loads acting on the wind turbines sited in the aligned layout, including the fluctuation amplitudes and power spectrum, were found to be significantly different from those with staggered layout.  相似文献   

5.
Many researchers have focused on the layout design of a wind farm using the computational methods. Most of previous researches focused on relevant large cell size and using same hub height wind turbines. In this paper, the authors investigate the possibility of using different hub height wind turbines in a wind farm. A limited area (2?km?×?2?km) with constant wind speed and direction is considered as the potential wind farm area, and a nested genetic algorithm is used as optimisation algorithm. Two different hub height wind turbines are introduced with two different cell sizes. Power output, cost, payback period, and total profit are selected as evaluation criteria when comparing the layouts with same hub height wind turbines with the layouts with different hub height wind turbines. The results demonstrate that it is feasible and possible to use different hub height wind turbines in a wind farm.  相似文献   

6.
Wind turbine spacing is an important design parameter for wind farms. Placing turbines too close together reduces their power extraction because of wake effects and increases maintenance costs because of unsteady loading. Conversely, placing them further apart increases land and cabling costs, as well as electrical resistance losses. The asymptotic limit of very large wind farms in which the flow conditions can be considered ‘fully developed’ provides a useful framework for studying general trends in optimal layouts as a function of dimensionless cost parameters. Earlier analytical work by Meyers and Meneveau (Wind Energy 15, 305–317 (2012)) revealed that in the limit of very large wind farms, the optimal turbine spacing accounting for the turbine and land costs is significantly larger than the value found in typical existing wind farms. Here, we generalize the analysis to include effects of cable and maintenance costs upon optimal wind turbine spacing in very large wind farms under various economic criteria. For marginally profitable wind farms, minimum cost and maximum profit turbine spacings coincide. Assuming linear‐based and area‐based costs that are representative of either offshore or onshore sites we obtain for very large wind farms spacings that tend to be appreciably greater than occurring in actual farms confirming earlier results but now including cabling costs. However, we show later that if wind farms are highly profitable then optimization of the profit per unit area leads to tighter optimal spacings than would be implied by cost minimization. In addition, we investigate the influence of the type of wind farm layout. © 2016 The Authors Wind Energy Published by John Wiley & Sons Ltd  相似文献   

7.
This paper focuses on the optimization problem of a wind farm layout. This area of research is currently receiving widespread attention, as optimal positioning of the turbines promotes the financial viability of the wind farm and enhances the competitiveness of wind projects in the energy market. In this work, cuckoo search (CS), a modern population‐based metaheuristic optimization algorithm, is used. The objective is to find the turbine layout and types that maximize the net present value of the wind farm, while constraints on the turbine positions have to be met. The following constraints are considered: Firstly, the minimum distance between turbines for safe operation; secondly, a realistic wind farm shape including forbidden zones for installation and the existing infrastructure. Furthermore, the optimization of the wind farm includes an algorithm to find the least expensive layout of the wind farm roads and the electrical collector system. The algorithm is based on Dijkstra's shortest path and Prim's minimum spanning tree algorithms. The test results indicate that the infrastructure cost has a significant effect on the optimum wind farm solution. A genetic algorithm, commonly applied to wind farm micro‐siting problems, is used to benchmark the performance of the CS. The results show that the CS is capable of consistently finding better solutions than the genetic algorithm.  相似文献   

8.
采用Jensen尾流模型来描述风电机组间尾流的干扰效应。首先基于网格化的改进遗传算法获得风电机组的数量和布局初始位置,再通过坐标化遗传算法对风电机组位置进行进一步调整优化,从而提高单位成本的发电量。根据所提出的方法,在3种不同的风场(定风向定风速、定风速变风向和变风速变风向)下,针对2 km×2 km的标准风场区域进行风电机组布局优化,再将其应用到不规则的实际案例,对比分析表明所提出的方法能有效提高发电量。  相似文献   

9.
This paper addresses the problem of optimal placement of wind turbines in a farm on Gokçeada Island located at the north‐east of Aegean Sea bearing full potential of wind energy generation. A multi‐objective genetic algorithm approach is employed to obtain optimal placement of wind turbines by maximizing the power production capacity while constraining the budget of installed turbines. Considering the speed and direction history, wind with constant intensity from a single direction is used during optimization. This study is based on wake deficit model mainly because of its simplicity, accuracy and fast calculation time. The individuals of the Pareto optimal solution set are evaluated with respect to various criteria, and the best configurations are presented. In addition to best placement layouts, results include objective function values, total power output, cost and number of turbines for each configuration. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
In the optimization of wind turbine micro-siting of wind farms, the major target is to maximize the total energy yield. But considering from the aspect of the power grid, the sensitivity of wind power generation to varying incoming wind direction is also an essential factor. However, most existing optimization approaches on wind turbine micro-siting are focused on increasing the total power yield only. In this paper, by employing computational fluid dynamics and the virtual particle model for the simulation of turbine wake flow, a sensitivity index is proposed to quantitatively evaluate the variation of power generation under varying wind direction. Typical turbine layouts obtained by existing power optimization approaches are evaluated for stability. Results indicate that regularly arranged turbine layouts are not suitable for stable power production. Based on solutions from the power optimization, a second-stage optimization using Particle Swarm Optimization algorithm is presented. The proposed optimization method adjusts the positions of the turbines locally, aiming at increasing the stability of wind farm power generation without damaging its advantage of high power yield. Case studies on flat terrain and complex terrain both demonstrate the effectiveness of the present local adjustment optimization method.  相似文献   

11.
Recent large eddy simulations have led to improved parameterizations of the effective roughness height of wind farms. This effective roughness height can be used to predict the wind velocity at hub‐height as function of the geometric mean of the spanwise and streamwise turbine spacings and the turbine loading factors. Recently, Meyers and Meneveau used these parameterizations to make predictions for the optimal wind turbine spacing in infinitely large wind farms. They found that for a realistic cost ratio between the turbines and the used land surface, the optimal turbine spacing may be considerably larger than that used in conventional wind farms. Here, we extend this analysis by taking the length of the wind farm, i.e. the number of rows in the downstream direction into account and show that the optimal turbine spacing strongly depends on the wind farm length. For small to moderately sized wind farms, the model predictions are consistent with spacings found in operational wind farms. For much larger wind farms, the extended optimal spacing found for infinite wind farms is confirmed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Dynamic models of wind farms with fixed speed wind turbines   总被引:1,自引:0,他引:1  
The increasing wind power penetration on power systems requires the development of adequate wind farms models for representing the dynamic behaviour of wind farms on power systems. The behaviour of a wind farm can be represented by a detailed model including the modelling of all wind turbines and the wind farm electrical network. But this detailed model presents a high order model if a wind farm with high number of wind turbines is modelled and therefore the simulation time is long. The development of equivalent wind farm models enables the model order and the computation time to be reduced when the impact of wind farms on power systems is studied. In this paper, equivalent models of wind farms with fixed speed wind turbines are proposed by aggregating wind turbines into an equivalent wind turbine that operates on an equivalent wind farm electrical network. Two equivalent wind turbines have been developed: one for aggregated wind turbines with similar winds, and another for aggregated wind turbines under any incoming wind, even with different incoming winds.The proposed equivalent models provide high accuracy for representing the dynamic response of wind farm on power system simulations with an important reduction of model order and simulation time compare to that of the complete wind farm modelled by the detailed model.  相似文献   

13.
In this study, we conduct a series of large‐eddy simulations (LESs) to study the impact of different incoming turbulent boundary layer flows over large wind farms, with a particular focus on the overall efficiency of electricity production and the evolution of the turbine wake structure. Five representative turbine placements in the large wind farm are considered, including an aligned layout and four staggered layouts with lateral or vertical offset arrangements. Four incoming flow conditions are used and arranged from the LESs of the ABL flow over homogeneous flat surfaces with four different aerodynamic roughness lengths (i.e., z0 = 0.5, 0.1, 0.01, and 0.0001 m), where the hub‐height turbulence intensity levels are about 11.1%, 8.9%, 6.8%, and 4.9%, respectively. The simulation results indicate that an enhancement in the inflow turbulence level can effectively increase the power generation efficiency in the large wind farms, with about 23.3% increment on the overall farm power production and up to about 32.0% increment on the downstream turbine power production. Under the same inflow condition, the change of the turbine‐array layouts can increase power outputs within the first 10 turbine rows, which has a maximum increment of about 26.5% under the inflow condition with low turbulence. By comparison, the increase of the inflow turbulence intensity facilitates faster wake recovery that raises the power generation efficiency of large wind farms than the adjustment of the turbine placing layouts.  相似文献   

14.
It is well accepted that the wakes created by upstream turbines significantly impact on the power production and fatigue loading of downstream turbines and that this phenomenon affects wind farm performance. Improving the understanding of wake effects and overall efficiency is critical for the optimisation of layout and operation of increasingly large wind farms. In the present work, the NREL 5‐MW reference turbine was simulated using blade element embedded Reynolds‐averaged Navier‐Stokes computations in sheared onset flow at three spatial configurations of two turbines at and above rated flow speed to evaluate the effects of wakes on turbine performance and subsequent wake development. Wake recovery downstream of the rearward turbine was enhanced due to the increased turbulence intensity in the wake, although in cases where the downstream turbine was laterally offset from the upstream turbine this resulted in relatively slower recovery. Three widely used wake superposition models were evaluated and compared with the simulated flow‐field data. It was found that when the freestream hub‐height flow speed was at the rated flow speed, the best performing wake superposition model varied depending according to the turbine array layout. However, above rated flow speed where the wake recovery distance is reduced, it was found that linear superposition of single turbine velocity deficits was the best performing model for all three spatial layouts studied.  相似文献   

15.
The optimization of wind farms with respect to spatial layout is addressed experimentally. Wake effects within wind turbine farms are well known to be deleterious in terms of power generation and structural loading, which is corroborated in this study. Computational models are the predominant tools in the prediction of turbine‐induced flow fields. However, for wind farms comprising hundreds of turbines, reliability of the obtained numerical data becomes a growing concern with potentially costly consequences. This study pursues a systematic complementary theoretical, experimental and numerical study of variations in generated power with turbine layout of an 80 turbine large wind farm. Wake effects within offshore wind turbine arrays are emulated using porous discs mounted on a flat plate in a wind tunnel. The adopted approach to reproduce experimentally individual turbine wake characteristics is presented, and drag measurements are argued to correctly capture the variation in power generation with turbine layout. Experimental data are juxtaposed with power predictions using ANSYS WindModeller simulation suite. Although comparison with available wind farm power output data has been limited, it is demonstrated nonetheless that this approach has potential for the validation of numerical models of power loss due to wake effects or even to make a direct physical prediction. The approach has even indicated useful data for the improvement of the physics within numerical models. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
A novel control approach is proposed to optimize the fatigue distribution of wind turbines in a large‐scale offshore wind farm on the basis of an intelligent agent theory. In this approach, each wind turbine is considered to be an intelligent agent. The turbine at the farm boundary communicates with its neighbouring downwind turbines and organizes them adaptively into a wind delivery group along the wind direction. The agent attributes and the event structure are designed on the basis of the intelligent agent theory by using the unified modelling language. The control strategy of the intelligent agent is studied using topology models. The reference power of an individual wind turbine from the wind farm controller is re‐dispatched to balance the turbine fatigue in the power dispatch intervals. In the fatigue optimization, the goal function is to minimize the standard deviation of the fatigue coefficient for every wind turbine. The optimization is constrained such that the average fatigue for every turbine is smaller than what would be achieved by conventional dispatch and such that the total power loss of the wind farm is restricted to a few percent of the total power. This intelligent agent control approach is verified through the simulation of wind data from the Horns Rev offshore wind farm. The results illustrate that intelligent agent control is a feasible way to optimize fatigue distribution in wind farms, which may reduce the maintenance frequency and extend the service life of large‐scale wind farms. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Existing studies of the spatial allocation of wind farms are typically based on turbine power generation efficiency and rarely consider the damage caused by lightning strikes. However, lightning damage seriously affects the economic performance of wind farms because of the high cost of repairing or replacing damaged blades. This paper proposes a method for the spatial optimization of multiple turbines based on lightning protection dependability. Firstly, the lightning protection efficiency of turbine blade protection systems is analyzed by combining the physical mechanisms of lightning leader progression with a conventional electro‐geometric model to develop an electro‐geometric model of turbine blades (EGMTB). Then, the optimized spatial allocation of multiple turbines in a wind farm is investigated using the EGMTB. The results are illustrated from an example wind farm with 1.5 MW turbines, which shows that the optimal spacing between two turbines perpendicular to the prevailing wind direction L is 4R‐6R, where R is the length of a turbine blade. This spacing is shown to effectively shield turbine blades from lightning damage over a wide range of lightning currents (>26‐60 kA). Note that, the suggested L will be smaller considering the influence of lightning polarity as it takes more difficulty developing upward leader (UL) in the condition of positive lightning striking. Experiments verify the effectiveness and correctness of this method.  相似文献   

18.
Accurately quantifying wind turbine wakes is a key aspect of wind farm economics in large wind farms. This paper introduces a new simulation post‐processing method to address the wind direction uncertainty present in the measurements of the Horns Rev offshore wind farm. This new technique replaces the traditional simulations performed with the 10 min average wind direction by a weighted average of several simulations covering a wide span of directions. The weights are based on a normal distribution to account for the uncertainty from the yaw misalignment of the reference turbine, the spatial variability of the wind direction inside the wind farm and the variability of the wind direction within the averaging period. The results show that the technique corrects the predictions of the models when the simulations and data are averaged over narrow wind direction sectors. In addition, the agreement of the shape of the power deficit in a single wake situation is improved. The robustness of the method is verified using the Jensen model, the Larsen model and Fuga, which are three different engineering wake models. The results indicate that the discrepancies between the traditional numerical simulations and power production data for narrow wind direction sectors are not caused by an inherent inaccuracy of the current wake models, but rather by the large wind direction uncertainty included in the dataset. The technique can potentially improve wind farm control algorithms and layout optimization because both applications require accurate wake predictions for narrow wind direction sectors. © 2013 The Authors. Wind Energy published by John Wiley & Sons, Ltd.  相似文献   

19.
One of the main concerns in the grid integration of large wind farms is their ability to behave as active controllable components in the power system. This article presents the design of a new integrated power control system for a wind farm made up exclusively of active stall wind turbines with AC grid connection. The designed control system has the task of enabling such a wind farm to provide the best grid support. It is based on two control levels: a supervisory control level, which controls the power production of the whole farm by sending out reference signals to each individual wind turbine, and a local control level, which ensures that the reference power signals at the wind turbine level are reached. The ability of active stall wind farms with AC grid connection to control the power production to the reference power ordered by the operators is assessed and discussed by means of simulations. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
Wind resource assessments are used to estimate a wind farm's power production during the planning process. It is important that these estimates are accurate, as they can impact financing agreements, transmission planning, and environmental targets. Here, we analyze the challenges in wind power estimation for onshore farms. Turbine wake effects are a strong determinant of farm power production. With given input wind conditions, wake losses typically cause downstream turbines to produce significantly less power than upstream turbines. These losses have been modeled extensively and are well understood under certain conditions. Most notably, validation of different model types has favored offshore farms. Models that capture the dynamics of offshore wind conditions do not necessarily perform equally as well for onshore wind farms. We analyze the capabilities of several different methods for estimating wind farm power production in 2 onshore farms with non‐uniform layouts. We compare the Jensen model to a number of statistical models, to meteorological downscaling techniques, and to using no model at all. We show that the complexities of some onshore farms result in wind conditions that are not accurately modeled by the Jensen wake decay techniques and that statistical methods have some strong advantages in practice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号