首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The impact of the nanoparticles and ribs on the thermal performance of the rotating U-type cooling channel are investigated for turbulent forced convection flow of nanofluids. The nanofluids are provided by the inclusion of the nanoparticles of TiO2 and Al2O3 in water as the base fluid, namely, water/Al2O3 and water/TiO2 nanofluids mixtures. The simulations are performed for three-dimensional turbulent flow and heat transfer using an RNG k-? turbulence model for Reynolds number range of 5000 to 20,000. To show the effectiveness of the ribs and nanofluids, three criteria are employed: heat transfer enhancement, pressure drop or power consumed, and the thermal performance factor. It is found that the contribution of turbulence promotion in heat transfer enhancement of the ribbed channel is more effective than that of enlarging the heat surface area. The results show that using ribs at the lowest Reynolds number and utilizing nanofluids at the highest one provide high heat transfer rate and thermal performance. At the middle Reynolds numbers, the effects of these two methods on heat transfer enhancement are relatively close to each other. In this case, if the pumping power is the main concern, using nanofluids is recommended due to providing a smaller pressure drop penalty.  相似文献   

2.
Natural convection inside a triangular solar collector is investigated numerically for different nanofluids and hybrid nanofluids in this study. The individual effects of Al2O3–water, carbon nanotubes (CNT)–water, and Cu–water nanofluids are observed for different solid volume fractions of nanoparticles (0%–10%). Three types of hybrid nanofluids are prepared using different ratios of Al2O3, CNT, and Cu nanoparticles in water. A comparison is made varying the Rayleigh numbers within laminar range (103–106) for different tilt angles (0°, 30°, 60°, and 90°) of the solar collector. The inclined surface of the triangular solar collector is isothermally cold and the bottom wall (absorber plate) is isothermally hot, whereas the vertical wall with respect to the absorber plate is considered adiabatic. Average Nusselt numbers along the hot wall for different parameters are observed. Streamlines and isotherm contours are also plotted for different cases. Dimensionless governing Navier–Stokes and thermal energy conservation equations are solved by Galerkin weighted residual finite element method. Better convective heat transfer is found for higher Rayleigh number, solid volume fraction, and tilt angle. In the case of hybrid nanofluid, increasing the percentage of the nanoparticle that gives better heat transfer performance individually results in enhancing natural convection heat transfer inside the enclosure.  相似文献   

3.
In this work, the heat transfer enhancement in a differentially heated enclosure using variable thermal conductivity and variable viscosity of Al2O3–water and CuO–water nanofluids is investigated. The results are presented over a wide range of Rayleigh numbers (Ra = 103–105), volume fractions of nanoparticles (0 ≤ φ ≤ 9%), and aspect ratios (½ ≤ A ≤ 2). For an enclosure with unity aspect ratio, the average Nusselt number of a Al2O3–water nanofluid at high Rayleigh numbers was reduced by increasing the volume fraction of nanoparticles above 5%. However, at low Rayleigh numbers, the average Nusselt number was slightly enhanced by increasing the volume fraction of nanoparticles. At high Rayleigh numbers, CuO–water nanofluids manifest a continuous decrease in Nusselt number as the volume fraction of nanoparticles is increased. However, the Nusselt number was not sensitive to the volume fraction at low Rayleigh numbers. The Nusselt number demonstrates to be sensitive to the aspect ratio. It was observed that enclosures, having high aspect ratios, experience more deterioration in the average Nusselt number when compared to enclosures having low aspect ratios. The variable thermal conductivity and variable viscosity models were compared to both the Maxwell-Garnett model and the Brinkman model. It was found that at high Rayleigh numbers the average Nusselt number was more sensitive to the viscosity models than to the thermal conductivity models.  相似文献   

4.
Two different kinds of non-Newtonian nanofluids were prepared by dispersion of Al2O3 and TiO2 nanoparticles in a 0.5 wt.% aqueous solution of carboxymethyl cellulose (CMC). Natural convection heat transfer of non-Newtonian nanofluids in a vertical cylinder uniformly heated from below and cooled from top was investigated experimentally. Results show that the heat transfer performance of nanofluids is significantly enhanced at low particle concentrations. Increasing nanoparticle concentration has a contrary effect on the heat transfer of nanofluids, so at concentrations greater than 1 vol.% of nanoparticles the heat transfer coefficient of nanofluids is less than that of the base fluid. Indeed it seems that for both nanofluids there exists an optimum nanoparticle concentration that heat transfer coefficient passes through a maximum. The optimum concentrations of Al2O3 and TiO2 nanofluids are about 0.2 and 0.1 vol.%, respectively. It is also observed that the heat transfer enhancement of TiO2 nanofluids is higher than that of the Al2O3 nanofluids. The effect of enclosure aspect ratio was also investigated. As expected, the heat transfer coefficient of nanofluids as well as the base fluid increases by increasing the aspect ratio.  相似文献   

5.
The heat transfer effectiveness of nanofluids is adversely affected by the delay in convection onset. The lesser effectiveness, when compared to that of base fluid, is observed in a range of nanofluid layer thickness. The heat transfer coefficient of water–Al2O3 nanofluid can be enhanced by sustaining the equilibrium between Rayleigh number, temperature, particle volume fraction, and enclosure aspect ratio. In this paper, the specific correlation of fluid layer thickness and the onset of convection, which can significantly dominate the heat transfer characteristics of nanofluids are investigated using the concept of critical Rayleigh number. The water layer thickness for convection onset is first experimentally assessed for different real-life heat flux densities. It is then performed for Al2O3–water nanofluid for varying volume fractions. With the increase in volume fraction even though thermal conductivity increases, the overall heat transfer enhancement of the nanofluid is reduced. Temperature involved (heat flux density), the volume fraction of the nanofluid used, nanofluid layer thickness (space availability for the cooling system), and mass of the nanoparticle influence heat transfer enhancement. A higher volume fraction may not always result in enhancement of heat transfer as far as nanofluids are concerned.  相似文献   

6.
In the present study, the effect of nanofluids on the thermal performance of heat pipes is experimentally investigated by testing circular screen mesh wick heat pipes using water-based Al2O3 nanofluids with the volume fraction of 1.0 and 3.0 Vol.%. The wall temperature distributions and the thermal resistances between the evaporator and the adiabatic sections are measured and compared with those for the heat pipe using DI water. The averaged evaporator wall temperatures of the heat pipes using the water-based Al2O3 nanofluids are much lower than those of the heat pipe using DI water. The thermal resistance of the heat pipe using the water-based Al2O3 nanofluids with the volume fraction of 3.0 Vol.% is significantly reduced by about 40% at the evaporator-adiabatic section. Also, the experimentally results implicitly show that the water-based Al2O3 nanofluids as the working fluid instead of DI water can enhance the maximum heat transport rate of the heat pipe. Based on the two clear evidences, we conclude that the major reason which can not only improve the maximum heat transport rate but also significantly reduce the thermal resistance of the heat pipe using nanofluids is not the enhancement of the effective thermal conductivity which most of previous researchers presented. Especially, we experimentally first observe the thin porous coating layer formed by nanoparticles suspended in nanofluids at wick structures. Based on the observation, it is first shown that the primary mechanism on the enhancement of the thermal performance for the heat pipe is the coating layer formed by nanoparticles at the evaporator section because the layer can not only extend the evaporation surface with high heat transfer performance but also improve the surface wettability and capillary wicking performance.  相似文献   

7.
In this paper, the effect of water-based Al2O3 nanofluids as working fluid on the thermal performance of a flat micro-heat pipe with a rectangular grooved wick is investigated. For the purpose, the axial variations of the wall temperature, the evaporation and condensation rates are considered by solving the one-dimensional conduction equation for the wall and the augmented Young–Laplace equation for the phase change process. In particular, the thermophysical properties of nanofluids as well as the surface characteristics formed by nanoparticles such as a thin porous coating are considered. From the comparison of the thermal performance using both DI water and nanofluids, it is found that the thin porous coating layer formed by nanoparticles suspended in nanofluids is a key effect of the heat transfer enhancement for the heat pipe using nanofluids. Also, the effects of the volume fraction and the size of nanoparticles on the thermal performance are studied. The results shows the feasibility of enhancing the thermal performance up to 100% although water-based Al2O3 nanofluids with the concentration less than 1.0% is used as working fluid. Finally, it is shown that the thermal resistance of the nanofluid heat pipe tends to decrease with increasing the nanoparticle size, which corresponds to the previous experimental results.  相似文献   

8.
In this paper the convective heat transfer and friction factor of the nanofluids in a circular tube with constant wall temperature under turbulent flow conditions were investigated experimentally. Al2O3 nanoparticles with diameters of 40 nm dispersed in distilled water with volume concentrations of 0.1–2 vol.% were used as the test fluid. All physical properties of the Al2O3–water nanofluids needed to calculate the pressure drop and the convective heat transfer coefficient were measured. The results show that the heat transfer coefficient of nanofluid is higher than that of the base fluid and increased with increasing the particle concentrations. Moreover, the Reynolds number has a little effect on heat transfer enhancement. The experimental data were compared with traditional convective heat transfer and viscous pressure drop correlations for fully developed turbulent flow. It was found that if the measured thermal conductivities and viscosities of the nanofluids were used in calculating the Reynolds, Prandtl, and Nusselt numbers, the existing correlations perfectly predict the convective heat transfer and viscous pressure drop in tubes.  相似文献   

9.
In the present investigation nanofluids containing CuO and Al2O3 oxide nanoparticles in water as base fluid in different concentrations produced and the laminar flow convective heat transfer through circular tube with constant wall temperature boundary condition were examined. The experimental results emphasize that the single phase correlation with nanofluids properties (Homogeneous Model) is not able to predict heat transfer coefficient enhancement of nanofluids. The comparison between experimental results obtained for CuO / water and Al2O3 / water nanofluids indicates that heat transfer coefficient ratios for nanofluid to homogeneous model in low concentration are close to each other but by increasing the volume fraction, higher heat transfer enhancement for Al2O3 / water can be observed.  相似文献   

10.
In recent studies, much attention has been given to nanofluids suggesting that adding nanoparticles in base fluids offers a higher heat transfer rate compared with conventional fluids. This study is based on the numerical investigation of different types of nanofluids, consisting of CuO (50 nm), SiO2 (40 nm), and Al2O3 (15 nm) nanoparticles at different volume concentrations. Several simulations were performed from low to high Reynolds numbers, corresponding to laminar and turbulent flow regimes using ANSYS-Fluent CFD solver. Results suggest that under a laminar flow regime with the same Reynolds number of 2000, CuO-based nanofluids perform better as compared with SiO2 and Al2O3-based nanofluids with Nusselt number (Nu) having percentage increase of 90% and 60% comparing with SiO2- and Al2O3-based nanofluids, respectively. However, at higher Reynolds numbers when the flow is turbulent, Al2O3-based nanofluids demonstrate better performance having a percentage increase in Nusselt numbers equal to 40% and 23% as compared with CuO and SiO2-based nanofluids respectively under the same Reynolds number of 15,000. This implies that turbulence has a significant effect on heat transfer rate, and is not only related to thermal conductivity. This study will help in designing more compact cooling systems for engines and the internal environment of motor vehicles.  相似文献   

11.
Heat transfer enhancement in a 3-D microchannel heat sink (MCHS) using nanofluids is investigated by a numerical study. The addition of nanoparticles to the coolant fluid changes its thermophysical properties in ways that are closely related to the type of nanoparticle, base fluid, particle volume fraction, particle size, and pumping power. The calculations in this work suggest that the best heat transfer enhancement can be obtained by using a system with an Al2O3–water nanofluid-cooled MCHS. Moreover, using base fluids with lower dynamic viscosity (such as water) and substrate materials with high thermal conductivity enhance the thermal performance of the MCHS. The results also show that as the particle volume fraction of the nanofluid increases, the thermal resistance first decreases and then increases. The lowest thermal resistance can be obtained by properly adjusting the volume fraction and pumping power under given geometric conditions. For a moderate range of particle sizes, the MCHS yields better performance when nanofluids with smaller nanoparticles are used. Furthermore, the overall thermal resistance of the MCHS is reduced significantly by increasing the pumping power. The heat transfer performance of Al2O3–water and diamond–water nanofluids was 21.6% better than that of pure water. The results reported here may facilitate improvements in the thermal performance of MCHSs.  相似文献   

12.
Stable surfactant-free Al2O3/deionized (DI) water nanofluids are prepared by a two-step process and are stabilized using an ultrasonic homogenizer. The thermal conductivity enhancement measured by a transient hot wire technique demonstrated a nonlinear relationship with increase in volume fraction of dispersed nanoparticles and attains a maximum enhancement of 15% for 1 vol% of Al2O3 loading in deionized water at 70°C. The stabilized Al2O3/DI water nanofluids were employed as the working fluid in a screen mesh wick heat pipe placed horizontally. The straight heat pipe configuration is altered for more practicality in use, with crimped edges, extended conduction lengths, and minute surface depressions. The heat pipe is tested at various levels of heat inputs and concentrations of Al2O3 nanoparticles. The evaporator section is heated by circulating water through a heating chamber, and the condenser section is cooled under free convection. The experimental results show an optimum reduction of 22% in the thermal resistance value using 1 vol% of Al2O3/DI nanofluids as compared to DI water at low heat input of 12 W. The stabilized operation of the heat pipe is observed at high heat input of 73 W and at low concentration of 0.005 vol% Al2O3/DI water nanofluids. The findings emphasize potential for nanofluids as future heat pipe fluids.  相似文献   

13.
The present paper is a comparison between heat transfer characteristics of Al2O3/water and CuO/water nanofluids through a square cross-section cupric duct in laminar flow under uniform heat flux. Sometimes because of pressure drop limitations the need for noncircular ducts arises in many heat transfer applications, and a testing facility has been constructed for this purpose and experimental studies were performed on both nanofluids under different nanoparticles concentrations in distilled water as a base fluid. The results indicate that a considerable heat transfer enhancement has been achieved by both nanofluids compared with base fluid. However, CuO/water nanofluid shows better heat transfer augmentation compared with Al2O3/water nanofluid through square cross-section duct.  相似文献   

14.
The turbulent flow of nanofluids with different volume concentrations of nanoparticles flowing through a two-dimensional duct under constant heat flux condition is analyzed numerically. The nanofluids considered are mixtures of copper oxide (CuO), alumina (Al2O3) and oxide titanium (TiO2) nanoparticles and water as the base fluid. All the thermophysical properties of nanofluids are temperature-dependent. The viscosity of nanofluids is obtained on basis of experimental data. The predicted Nusselt numbers exhibit good agreement with Gnielinski's correlation. The results show that by increasing the volume concentration, the wall shear stress and heat transfer rates increase. For a constant volume concentration and Reynolds number, the effect of CuO nanoparticles to enhance the Nusselt number is better than Al2O3 and TiO2 nanoparticles.  相似文献   

15.
In this paper, thermal characteristics of natural convection in a rectangular cavity heated from below with water-based nanofluids containing alumina (Al2O3 nanofluids) are theoretically investigated with Jang and Choi’s model for predicting the effective thermal conductivity of nanofluids and various models for the effective viscosity. To validate theoretical results, we compare theoretical results with experimental results presented by Putra et al. It is shown that the experimental results are put between a theoretical line derived from Jang and Choi’s model and Einstein’s model and a theoretical line from Jang and Choi’s model and Pak and Cho’s correlation. In addition, the effects of the volume fraction, the size of nanoparticles, and the average temperature of nanofluids on natural convective instability and heat transfer characteristics of water-based Al2O3 nanofluids in a rectangular cavity heated from below are theoretically presented. Based on the results, this paper shows that water-based Al2O3 nanofluids is more stable than base fluid in a rectangular cavity heated from below as the volume fraction of nanoparticles increases, the size of nanoparticles decreases, or the average temperature of nanofluids increases. Finally, we theoretically show that the ratio of heat transfer coefficient of nanofluids to that of base fluid is decreased as the size of nanoparticles increases, or the average temperature of nanofluids is decreased.  相似文献   

16.
Effect of using Al2O3–water nanofluids with different volume fractions and particle diameters on generated entropy, hydrodynamic performance and heat transfer characteristics of a tangential micro-heat sink (TMHS) was numerically investigated in this research. Results indicated that considerable heat transfer enhancement is possible when using Al2O3–water nanofluids as coolant and clearly the enhancement improves with increasing particles concentration and decreasing particles size. However, using nanofluid has also induced drastic effects on the pumping power that increases with particles volume fraction and Reynolds number. Finally, it was found that generated total entropy decreases with increasing volume fraction and Reynolds number and decreasing particles size.  相似文献   

17.
A numerical investigation on natural convective heat transfer of nanofluid (Al2O3+water) inside a partially heated vertical annulus of high aspect ratio (352) has been carried out. The computational fluid dynamics solver Ansys Fluent is used for simulation and results are presented for various volume fraction of nanoparticles (0‐0.04) at different heat flux values (3‐12 kW/m2). Two well‐known correlations for evaluating thermal conductivity and viscosity have been used. Thus different combinations of the available correlations have been set to form four models (I, II, III, and IV). Therefore, a detailed analysis has been executed to identify effects of thermophysical properties on heat transfer and fluid flow of nanofluids using different models. The results show enhancement in heat transfer coefficient with volume fraction of nanoparticles. Highest enhancement achieved is found to be 14.17% based on model III, while the minimum is around 7.27% based on model II. Dispersion of nanoparticles in base fluid declines the Nusselt number and Reynolds number with different rates depending on various models. A generalized correlation is proposed for Nusselt number of nanofluids in the annulus in terms of volume fraction of nanoparticles, Rayleigh number, Reynolds number, and Prandtl number.  相似文献   

18.
Heat transfer enhancement capabilities of coolants with suspended metallic nanoparticles inside typical radial flow cooling systems are numerically investigated in this paper. The laminar forced convection flow of these nanofluids between two coaxial and parallel disks with central axial injection has been considered using temperature dependent nanofluid properties. Results clearly indicate that considerable heat transfer benefits are possible with the use of these fluid/solid particle mixtures. For example, a Water/Al2O3 nanofluid with a volume fraction of nanoparticles as low as 4% can produce a 25% increase in the average wall heat transfer coefficient when compared to the base fluid alone (i.e., water). Furthermore, results show that considerable differences are found when using constant property nanofluids (temperature independent) versus nanofluids with temperature dependent properties. The use of temperature-dependent properties make for greater heat transfer predictions with corresponding decreases in wall shear stresses when compared to predictions using constant properties. With an increase in wall heat flux, it was found that the average heat transfer coefficient increases whilst the wall shear stress decreases for cases using temperature-dependent nanofluid properties.  相似文献   

19.
In the present study, a three dimensional thermal lattice Boltzmann model was developed to investigate the flow dynamics and mixed convection heat transfer of Al2O3/water nanofluid in a cubic cavity in the presence of magnetic field. The model was first validated with previous numerical and experimental results. Satisfactory agreement was obtained. Then the effects of Rayleigh number, nanoparticle volume fraction, Hartmann number and Richardson number on nanofluid flow dynamics and heat transfer were examined. Numerical results indicate that adding nanoparticles to pure water leads to heat transfer enhancement for low Rayleigh numbers. However, this enhancement might be weakened and even reversed for high Rayleigh numbers. In addition, the results show the external applied magnetic field has an effect of suppressing the convective heat transfer in the cavity. Moreover, the results demonstrate that the Richardson number in mixed convection has significant influences on both streamlines and temperature field.  相似文献   

20.
Heat transfer characteristics of Fe2O3/water and Fe2O3/EG nanofluids were measured in a shell and tube heat exchanger under laminar to turbulent flow condition. In the shell and tube heat exchanger, water and ethylene glycol-based Fe2O3 nanofluids with 0.02%, 0.04%, 0.06% and 0.08% volume fractions were used as working fluids for different flow rates of nanofluids. The effects of Reynold's number, volume concentration of suspended nanoparticles and different base fluids on the heat transfer characteristics were investigated. Based on the results, adding nanoparticles to the base fluid causes a significant enhancement of the heat transfer characteristics and thermal conductivity. This enhancement was investigated with regard to various factors; concentration of nanoparticles, types of base fluids, sonication time and temperature of fluids. In this paper, the effect of Fe2O3 nanoparticles on the thermal conductivity of base fluids like ethylene glycol and water was studied. The thermal conductivity measurement was made for different concentrations and temperatures. As the concentration of the nanoparticles increased, there was a significant enhancement in thermal conductivity and overall heat transfer due to more interaction between particles. It was also observed that there was an improvement in the thermal conductivity of the base fluid as the temperature increased. The measurements also showed that the pressure drop of nanofluid was higher than that of the base fluid in a turbulent flow regime. However, there was no significant increase in pressure drop at laminar flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号