首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Great challenges remain concerning the cost‐effective manufacture of high‐performance metal meshes for transparent glass heaters (TGHs). Here, a high‐performance silver mesh fabrication technique is proposed for TGHs using electric‐field‐driven microscale 3D printing and a UV‐assisted microtransfer process. The results show a more optimal trade‐off in sheet resistance (Rs = 0.21 Ω sq?1) and transmittance (T = 93.9%) than for indium tin oxide (ITO) and ITO substitutes. The fabricated representative TGH also exhibits homogeneous and stable heating performance, remarkable environmental adaptability (constant Rs for 90 days), superior mechanical robustness (Rs increase of only 0.04 in harsh conditions–sonication at 100 °C), and strong adhesion force with a negligible increase in Rs (2–12%) after 100 peeling tests. The practical viability of this TGH is successfully demonstrated with a deicing test (ice cube: 21 cm3, melting time: 78 s, voltage and glass thickness: 4 V, 5 mm). All of these advantages of the TGHs are attributed to the successful fabrication of silver meshes with high resolution and high aspect ratio on the glass substrate using the thick film silver paste. The proposed technique is a promising new tool for the inexpensive fabrication of high‐performance TGHs.  相似文献   

2.
Corrosive precursors used for the preparation of organic–inorganic hybrid perovskite photoactive layers prevent the application of ultrathin metal layers as semitransparent bottom electrodes in perovskite solar cells (PVSCs). This study introduces tin‐oxide (SnOx) grown by atomic layer deposition (ALD), whose outstanding permeation barrier properties enable the design of an indium‐tin‐oxide (ITO)‐free semitransparent bottom electrode (SnOx/Ag or Cu/SnOx), in which the metal is efficiently protected against corrosion. Simultaneously, SnOx functions as an electron extraction layer. We unravel the spontaneous formation of a PbI2 interfacial layer between SnOx and the CH3NH3PbI3 perovskite. An interface dipole between SnOx and this PbI2 layer is found, which depends on the oxidant (water, ozone, or oxygen plasma) used for the ALD growth of SnOx. An electron extraction barrier between perovskite and PbI2 is identified, which is the lowest in devices based on SnOx grown with ozone. The resulting PVSCs are hysteresis‐free with a stable power conversion efficiency (PCE) of 15.3% and a remarkably high open circuit voltage of 1.17 V. The ITO‐free analogues still achieve a high PCE of 11%.  相似文献   

3.
Uniform metal nanomesh structures are promising candidates that may replace of indium‐tin oxide (ITO) in transparent conducting electrodes (TCEs). However, the durability of the uniform metal mesh has not yet been studied. For this reason, a comparative analysis of the durability of TCEs based on pure Ag and AgNi nanomesh, which are fabricated by using simple transfer printing, is performed. The AgNi nanomesh shows high long‐term stability to oxidation, heat, and chemicals compared with that of pure Ag nanomesh. This is because of nickel in the AgNi nanomesh. Furthermore, the AgNi nanomesh shows strong adhesion to a transparent substrate and good stability after repeated bending.  相似文献   

4.
Free‐standing paper‐like thin‐film electrodes have great potential to boost next‐generation power sources with highly flexible, ultrathin, and lightweight requirements. In this work, silver‐quantum‐dot‐ (2–5 nm) modified transition metal oxide (including MoO3 and MnO2) paper‐like electrodes are developed for energy storage applications. Benefitting from the ohmic contact at the interfaces between silver quantum dots and MoO3 nanobelts (or MnO2 nanowires) and the binder‐free nature and 0D/1D/2D nanostructured 3D network of the fabricated electrodes, substantial improvements on the electrical conductivity, efficient ionic diffusion, and areal capacitances of the hybrid nanostructure electrodes are observed. With this proposed strategy, the constructed asymmetric supercapacitors, with Ag quantum dots/MoO3 “paper” as anode, Ag quantum dots/MnO2 “paper” as cathode, and neutral Na2SO4/polyvinyl alcohol hydrogel as electrolyte, exhibit significantly enhanced energy and power densities in comparison with those of the supercapacitors without modification of Ag quantum dots on electrodes; present excellent cycling stability at different current densities and good flexibility under various bending states; offer possibilities as high‐performance power sources with low cost, high safety, and environmental friendly properties.  相似文献   

5.
Silver nanowire (Ag NW) transparent conductive electrodes with high conductivity and optical transmittance are fabricated. Then, WO3 films are deposited on Ag NW electrodes by an electrochemical deposition method. The WO3/Ag NW films act as obvious optical modulators in the visible region. More importantly, the WO3/Ag NW films have distinct advantage on NIR modulation over conventional WO3/ITO electrode. Meanwhile, the WO3/Ag NW films own high electrochromic efficiency of 86.9 cm2 C?1 at NIR region of 1100 nm. Furthermore, electrochromic devices (ECDs) based on Ag NW substrates are fabricated in this study, which exhibit excellent cycling stability and distinct modulation of near-infrared light compared with ITO-based ECDs. This work is the first study that reports the application of Ag NW-based electrochromic films and electrochromic devices in modulation of NIR light. It exhibits bright prospects that the electrochromic materials deposited on Ag NW electrodes may find potential application in thermal control and emission detectors for spacecraft.  相似文献   

6.
On account of unique characteristics, the integration of metal–organic frameworks as active materials in electronic devices attracts more and more attention. The film thickness, uniformity, area, and roughness are all fatal factors limiting the development of electrical and optoelectronic applications. However, research focused on ultrathin free‐standing films is in its infancy. Herein, a new method, vapor‐induced method, is designed to construct centimeter‐sized Ni3(HITP)2 films with well‐controlled thickness (7, 40, and 92 nm) and conductivity (0.85, 2.23, and 22.83 S m?1). Further, traditional transfer methods are tactfully applied to metal–organic graphene analogue (MOGA) films. In order to maintain the integrity of films, substrates are raised up from bottom of water to hold up films. The stripping method greatly improves the surface roughness Rq (root mean square roughness) without loss of conductivity and endows the film with excellent elasticity and flexibility. After 1000 buckling cycles, the conductance shows no obvious decrease. Therefore, the work may open up a new avenue for flexible electronic and magnetic devices based on MOGA.  相似文献   

7.
High‐efficiency small‐molecule‐based organic photovoltaics (SM‐OPVs) using two electron donors (p ‐DTS(FBTTh2)2 and ZnP) with distinctively different absorption and structural features are reported. Such a combination works well and synergically improves device short‐circuit current density (J sc) to 17.99 mA cm?2 and fill factor (FF) to 77.19%, yielding a milestone efficiency of 11%. To the best of our knowledge, this is the highest power conversion efficiency reported for SM‐OPVs to date and the first time to combine high J sc over 17 mA cm?2 and high FF over 77% into one SM‐OPV. The strategy of using multicomponent materials, with a selecting role of balancing varied electronic and structural necessities can be an important route to further developing higher performance devices. This development is important, which broadens the dimension and versatility of existing materials without much chemistry input.  相似文献   

8.
In this work graphene sheets grown by chemical vapor deposition (CVD) with controlled numbers of layers were used as transparent electrodes in organic photovoltaic (OPV) devices. It was found that for devices with pristine graphene electrodes, the power conversion efficiency (PCE) is comparable to their counterparts with indium tin oxide (ITO) electrodes. Nevertheless, the chances for failure in OPVs with pristine graphene electrodes are higher than for those with ITO electrodes, due to the surface wetting challenge between the hole-transporting layer and the graphene electrodes. Various alternative routes were investigated and it was found that AuCl(3) doping on graphene can alter the graphene surface wetting properties such that a uniform coating of the hole-transporting layer can be achieved and device success rate can be increased. Furthermore, the doping both improves the conductivity and shifts the work function of the graphene electrode, resulting in improved overall PCE performance of the OPV devices. This work brings us one step further toward the future use of graphene transparent electrodes as a replacement for ITO.  相似文献   

9.
ZnO is a potential candidate for photodetection utilizing the pyroelectric effect. Here, a self‐biased and translucent photodetector with the configuration of Cu4O3/ZnO/FTO/Glass is designed and fabricated. In addition, the pyroelectric effect is effectively harvested using indium tin oxide (ITO), silver nanowires (AgNWs), and a blend of AgNWs‐coated ITO as the transparent selective contact electrode. The improved rise times are observed from 1400 µs (bare condition; without the selective electrode) to 69, 60, 7 µs, and fall times from 720 µs (bare condition) to 80, 70, 10 µs for corresponding ITO, AgNWs, and AgNWs‐coated ITO contact electrodes, respectively. Similarly, the responsivity and detectivity are enhanced by about 4.39 × 107 and 5.27 × 105%, respectively. An energy band diagram is proposed to explain the underlying working mechanism based on the workfunction of the ITO (4.7 eV) and AgNWs (4.57 eV) as measured by Kelvin probe force microscopy, which confirms the formation of type‐II band alignment resulting in the efficient transport of photogenerated charge carriers. The functional use of the transparent selective contact electrode can effectively harness the pyro‐phototronic effect for next‐generation transparent and flexible optoelectronic applications.  相似文献   

10.
A method to prepare aqueous metal oxide inks for tuning the work function (WF) of electrodes is demonstrated. Thin films prepared from the metal oxide ink based on vanadium oxide (V2O5) nanoparticles are found to increase the WF of an indium‐tin‐oxide (ITO) electrode. ITO substrates modified with V2O5 films are applied as a hole selective layer (HSL) in polymer solar cells (PSCs) using a poly(3‐hexylthiophene) and [6,6]‐phenyl‐C61 butyric acid methyl ester blend as a photoactive layer. The PSCs prepared with V2O5‐modified ITO show better device performance, achieving a power conversion efficiency of 3.6%, demonstrating 15% enhancement compared to conventional ITO/poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT‐PSS) based devices. Furthermore, ITO/V2O5‐modified devices exhibit better ambient stability with 60% improvement in device lifetime than those using PEDOT:PSS as an HSL. This solution‐processable and highly stable WF‐modifying metal oxide film can be a potential alternative material for engineering interfaces in optoelectronic devices.  相似文献   

11.
Improved performance in plasmonic organic solar cells (OSCs) and organic light‐emitting diodes (OLEDs) via strong plasmon‐coupling effects generated by aligned silver nanowire (AgNW) transparent electrodes decorated with core–shell silver–silica nanoparticles (Ag@SiO2NPs) is demonstrated. NP‐enhanced plasmonic AgNW (Ag@SiO2NP–AgNW) electrodes enable substantially enhanced radiative emission and light absorption efficiency due to strong hybridized plasmon coupling between localized surface plasmons (LSPs) and propagating surface plasmon polaritons (SPPs) modes, which leads to improved device performance in organic optoelectronic devices (OODs). The discrete dipole approximation (DDA) calculation of the electric field verifies a strongly enhanced plasmon‐coupling effect caused by decorating core–shell Ag@SiO2NPs onto the AgNWs. Notably, an electroluminescence efficiency of 25.33 cd A?1 (at 3.2 V) and a power efficiency of 25.14 lm W?1 (3.0 V) in OLEDs, as well as a power conversion efficiency (PCE) value of 9.19% in OSCs are achieved using hybrid Ag@SiO2NP–AgNW films. These are the highest values reported to date for optoelectronic devices based on AgNW electrodes. This work provides a new design platform to fabricate high‐performance OODs, which can be further explored in various plasmonic and optoelectronic devices.  相似文献   

12.
In recent, silver (Ag) nanowires (NWs) have received much attention as an alternative to indium tin oxide (ITO) for transparent electrode application in printed and transparent electronics. However, Ag NWs have its breakup problem by joule heating during current. To overcome this problem, this paper demonstrates a mesh type electrode based on Ag nanoparticles, which is fabricated on PET substrate through an ink-jet printing technique. The proposed electrode has a low resistance of 108.5 Ω/sq and a good optical transparency around 92% at 300–800 nm. It has a relationship that the sheet resistance drops with the decrease of transparency due to depending hole size and the best curing temperature is found to be 120 °C. It also demonstrate an excellent flexible stability, showing <?2% resistance change after over 100 bending cycles. These resistance and transparency are similar with that of commercially ITO electrode, and are superior to other alternatives such as carbon nanotube electrodes. The proposed electrode can be considered as a commercial electrode to as an alternative to ITO electrode.  相似文献   

13.
Fabrication of junction‐free Ag fiber electrodes for flexible organic light‐emitting diodes (OLEDs) is demonstrated. The junction‐free Ag fiber electrodes are fabricated by electrospun polymer fibers used as an etch mask and wet etching of Ag thin film. This process facilitates surface roughness control, which is important in transparent electrodes based on metal wires to prevent electrical instability of the OLEDs. The transmittance and resistance of Ag fiber electrodes can be independently adjusted by controlling spinning time and Ag deposition thickness. The Ag fiber electrode shows a transmittance of 91.8% (at 550 nm) at a sheet resistance of 22.3 Ω □?1, leading to the highest OLED efficiency. In addition, Ag fiber electrodes exhibit excellent mechanical durability, as shown by measuring the change in resistance under repeatable mechanical bending and various bending radii. The OLEDs with Ag fiber electrodes on a flexible substrate are successfully fabricated, and the OLEDs show an enhancement of EQE (≈19%) compared to commercial indium tin oxide electrodes.  相似文献   

14.
The conventional anode for organic photovoltaics (OPVs), indium tin oxide (ITO), is expensive and brittle, and thus is not suitable for use in roll-to-roll manufacturing of OPVs. In this study, fully solution-processed polymer bulk heterojunction (BHJ) solar cells with anodes made from silver nanowires (Ag NWs) have been successfully fabricated with a configuration of Ag NWs/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/polymer:phenyl-C(61)-butyric acid methyl ester (PCBM)/Ca/Al. Efficiencies of 2.8 and 2.5% are obtained for devices with Ag NW network on glass and on poly(ethylene terephthalate) (PET), respectively. The efficiency of the devices is limited by the low work function of the Ag NWs/PEDOT:PSS film and the non-ideal ohmic contact between the Ag NW anode and the active layer. Compared with devices based on the ITO anode, the open-circuit voltage (V(oc)) of solar cells based on the Ag NW anode is lower by ~0.3 V. More importantly, highly flexible BHJ solar cells have been firstly fabricated on Ag NWs/PET anode with recoverable efficiency of 2.5% under large deformation up to 120°. This study indicates that, with improved engineering of the nanowires/polymer interface, Ag NW electrodes can serve as a low-cost, flexible alternative to ITO, and thereby improve the economic viability and mechanical stability of OPVs.  相似文献   

15.
Indium Tin Oxide (ITO) is the most commonly used anode as a transparent electrode and more recently as an anode for organic photovoltaics (OPVs). However, there are significant drawbacks in using ITO which include high material costs, mechanical instability including brittleness and poor electrical properties which limit its use in low-cost flexible devices. We present initial results of poly(3-hexylthiophene): phenyl-C61-butyric acid methyl ester OPVs showing that an efficiency of 1.9% (short-circuit current 7.01 mA/cm2, open-circuit voltage 0.55 V, fill factor 0.49) can be attained using an ultra thin film of gold coated glass as the device anode. The initial I-V characteristics demonstrate that using high work function metals when the thin film is kept ultra thin can be used as a replacement to ITO due to their greater stability and better morphological control.  相似文献   

16.
Indium Tin Oxide (ITO) films are widely used as transparent electrodes in electronic displays and solar cells. However, the small fracture strain of brittle ITO films poses significant challenge to their applications in flexible electronics devices that often undergo large deformation. Inspired by recent development of inorganic/organic hybrid permeation barriers for flexible electronics, we design and fabricate ITO‐based multilayer electrodes with enhanced electro‐mechanical durability. In situ electro‐mechanical experiments of five structural designs of ITO‐based multilayer electrodes are performed to investigate the evolution of crack density and the corresponding variance of electrical resistance of such electrodes. A coherent mechanics model is established to determine the driving force for crack propagation in the ITO layer in these electrodes. The mechanics model suggests that a top protective polymeric coating above and an intermediate polymeric layer below the ITO layer can effectively enhance the mechanical durability of the ITO electrodes by reducing the crack driving force up to 10‐folds. The modeling results offer mechanistic understanding of the in situ experimental measurements of the critical fracture strains of the five types of ITO‐based multilayer electrodes. The findings in this work provide quantitative guidance for the material selection and structural optimization of ITO‐based multilayer transparent electrodes of high mechanical durability.  相似文献   

17.
Using high surface area nanostructured electrodes in organic photovoltaic (OPV) devices is a route to enhanced power conversion efficiency. In this paper, indium tin oxide (ITO) and hybrid ITO/SiO(2) nanopillars are employed as three-dimensional high surface area transparent electrodes in OPVs. The nanopillar arrays are fabricated via glancing angle deposition (GLAD) and electrochemically modified with nanofibrous PEDOT:PSS (poly(3,4-ethylenedioxythiophene):poly(p-styrenesulfonate)). The structures are found to have increased surface area as characterized by porosimetry. When applied as anodes in polymer/fullerene OPVs (architecture: commercial ITO/GLAD ITO/PEDOT:PSS/P3HT:PCBM/Al, where P3HT is 2,5-diyl-poly(3-hexylthiophene) and PCBM is [6,6]-phenyl-C(61)-butyric acid methyl ester), the air-processed solar cells incorporating high surface area, PEDOT:PSS-modified ITO nanoelectrode arrays operate with improved performance relative to devices processed identically on unstructured, commercial ITO substrates. The resulting power conversion efficiency is 2.2% which is a third greater than for devices prepared on commercial ITO. To further refine the structure, insulating SiO(2) caps are added above the GLAD ITO nanopillars to produce a hybrid ITO/SiO(2) nanoelectrode. OPV devices based on this system show reduced electrical shorting and series resistance, and as a consequence, a further improved power conversion efficiency of 2.5% is recorded.  相似文献   

18.
2D transition metal dichalcogenides (TMDCs) have emerged as promising candidates for post‐silicon nanoelectronics owing to their unique and outstanding semiconducting properties. However, contact engineering for these materials to create high‐performance devices while adapting for large‐area fabrication is still in its nascent stages. In this study, graphene/Ag contacts are introduced into MoS2 devices, for which a graphene film synthesized by chemical vapor deposition (CVD) is inserted between a CVD‐grown MoS2 film and a Ag electrode as an interfacial layer. The MoS2 field‐effect transistors with graphene/Ag contacts show improved electrical and photoelectrical properties, achieving a field‐effect mobility of 35 cm2 V?1 s?1, an on/off current ratio of 4 × 108, and a photoresponsivity of 2160 A W?1, compared to those of devices with conventional Ti/Au contacts. These improvements are attributed to the low work function of Ag and the tunability of graphene Fermi level; the n‐doping of Ag in graphene decreases its Fermi level, thereby reducing the Schottky barrier height and contact resistance between the MoS2 and electrodes. This demonstration of contact interface engineering with CVD‐grown MoS2 and graphene is a key step toward the practical application of atomically thin TMDC‐based devices with low‐resistance contacts for high‐performance large‐area electronics and optoelectronics.  相似文献   

19.
A novel approach to fabricate flexible organic solar cells is proposed without indium tin oxide (ITO) and poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) using junction‐free metal nanonetworks (NNs) as transparent electrodes. The metal NNs are monolithically etched using nanoscale shadow masks, and they exhibit excellent optoelectronic performance. Furthermore, the optoelectrical properties of the NNs can be controlled by both the initial metal layer thickness and NN density. Hence, with an extremely thin silver layer, the appropriate density control of the networks can lead to high transmittance and low sheet resistance. Such NNs can be utilized for thin‐film devices without planarization by conductive materials such as PEDOT:PSS. A highly efficient flexible organic solar cell with a power conversion efficiency (PCE) of 10.6% and high device yield (93.8%) is fabricated on PEDOT‐free and ITO‐free transparent electrodes. Furthermore, the flexible solar cell retains 94.3% of the initial PCE even after 3000 bending stress tests (strain: 3.13%).  相似文献   

20.
A new structure of flexible transparent electrodes is reported, featuring a metal mesh fully embedded and mechanically anchored in a flexible substrate, and a cost‐effective solution‐based fabrication strategy for this new transparent electrode. The embedded nature of the metal‐mesh electrodes provides a series of advantages, including surface smoothness that is crucial for device fabrication, mechanical stability under high bending stress, strong adhesion to the substrate with excellent flexibility, and favorable resistance against moisture, oxygen, and chemicals. The novel fabrication process replaces vacuum‐based metal deposition with an electrodeposition process and is potentially suitable for high‐throughput, large‐volume, and low‐cost production. In particular, this strategy enables fabrication of a high‐aspect‐ratio (thickness to linewidth) metal mesh, substantially improving conductivity without considerably sacrificing transparency. Various prototype flexible transparent electrodes are demonstrated with transmittance higher than 90% and sheet resistance below 1 ohm sq?1, as well as extremely high figures of merit up to 1.5 × 104, which are among the highest reported values in recent studies. Finally using our embedded metal‐mesh electrode, a flexible transparent thin‐film heater is demonstrated with a low power density requirement, rapid response time, and a low operating voltage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号