首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ultrathin planar absorbers hold promise in solar energy systems because they can reduce the material,fabrication,and system cost.Here,we present a general strategy of effective medium design to realize ultrathin planar broadband absorbers.The absorber consists of two ultrathin absorbing dielectrics to designan effective absorbing medium,a transparent layer,and metallic substrate.Compared with previous studies,this strategy provides another dimension of freedom to enhance optical absorption;therefore,destructive interference can be realized over a broad spectrum.To demonstrate the power and simplicity of this strategy,we both experimentally and theoretically characterized an absorber with 5-nm-thick Ge,10-nm-thick Ti,and 50-nm-thick SiO2 films coated on an Ag substrate fabricated using simple deposition methods.Absorptivity higher than 80% was achieved in 15-nm-thick (1/50 of the center wavelength) Ge and Ti films from 400 nm to near 1 μm.As an application example,we experimentally demonstrated that the absorber exhibited a normal solar absorptivity of 0.8 with a normal emittance of 0.1 at 500 ℃,thus demonstrating its potential in solar thermal systems.The effective medium design strategy is general and allows material versatility,suggesting possible applications in real-time optical manipulation using dynamic materials.  相似文献   

2.
Inorganic–organic hybrid perovskite thin films have attracted significant attention as an alternative to silicon in photon‐absorbing devices mainly because of their superb optoelectronic properties. However, high‐definition patterning of perovskite thin films, which is important for fabrication of the image sensor array, is hardly accomplished owing to their extreme instability in general photolithographic solvents. Here, a novel patterning process for perovskite thin films is described: the high‐resolution spin‐on‐patterning (SoP) process. This fast and facile process is compatible with a variety of spin‐coated perovskite materials and perovskite deposition techniques. The SoP process is successfully applied to develop a high‐performance, ultrathin, and deformable perovskite‐on‐silicon multiplexed image sensor array, paving the road toward next‐generation image sensor arrays.  相似文献   

3.
ZnO is a wide‐bandgap (3.37 eV at room temperature) oxide semiconductor that is attractive for its great potential in short‐wavelength optoelectronic devices, in which high quality films and heterostructures are essential for high performance. In this study, controlled growth of ZnO‐based thin films and heterostructures by molecular beam epitaxy (MBE) is demonstrated on different substrates with emphasis on interface engineering. It is revealed that ultrathin AlN or MgO interfacial layers play a key role in establishing structural and chemical compatibility between ZnO and substrates. Furthermore, a quasi‐homo buffer is introduced prior to growth of a wurtzite MgZnO epilayer to suppress the phase segregation of rock‐salt MgO, achieving wide‐range bandgap tuning from 3.3 to 4.55 eV. Finally, a visible‐blind UV detector exploiting a double heterojunction of n‐ZnO/insulator‐MgO/p‐Si and a solar‐blind UV detector using MgZnO as an active layer are fabricated by using the growth techniques discussed here.  相似文献   

4.
透明PLZT电光陶瓷材料的制备及应用研究进展   总被引:4,自引:0,他引:4  
PLZT电光材料(陶瓷和薄膜)具有很好的秀明性和大的电光效应,可广泛应用于光电子学、集成电学等领域。本文综述了透明PLZT电光陶瓷、薄膜的制备工艺及应用,分析了其研究现状,简单论述了其发展趋势。  相似文献   

5.
Optical interference is used to enhance light–matter interaction and harvest broadband light in ultrathin semiconductor absorber films on specular back‐reflectors. However, the high‐temperature processing in oxygen atmosphere required for oxide absorbers often degrades metallic back‐reflectors and their specular reflectance. In order to overcome this problem, a newly developed film flip and transfer process is presented that enables high‐temperature processing without degradation of the metallic back‐reflector and without the need of passivation interlayers. The film flip and transfer process improves the performance of photoanodes for photoelectrochemical water splitting comprising ultrathin (<20 nm) hematite (α‐Fe2O3) films on silver–gold alloy (90 at% Ag–10 at% Au) back‐reflectors. Specular back‐reflectors are obtained with high reflectance below hematite films, which is necessary for maximizing the productive light absorption in the hematite film and minimizing nonproductive absorption in the back‐reflector. Furthermore, the film flip and transfer process opens up a new route to attach thin film stacks onto a wide range of substrates including flexible or temperature sensitive materials.  相似文献   

6.
The unique properties of hybrid heterostructures have motivated the integration of two or more different types of nanomaterials into a single optoelectronic device structure. Despite the promising features of organic semiconductors, such as their acceptable optoelectronic properties, availability of low‐cost processes for their fabrication, and flexibility, further optimization of both material properties and device performances remains to be achieved. With the emergence of atomically thin 2D materials, they have been integrated with conventional organic semiconductors to form multidimensional heterostructures that overcome the present limitations and provide further opportunities in the field of optoelectronics. Herein, a comprehensive review of emerging 2D–organic heterostructures—from their synthesis and fabrication to their state‐of‐the‐art optoelectronic applications—is presented. Future challenges and opportunities associated with these heterostructures are highlighted.  相似文献   

7.
Owing to inherent 2D structure, marvelous mechanical, electrical, and thermal properties, graphene has great potential as a macroscopic thin film for surface coating, composite, flexible electrode, and sensor. Nevertheless, the production of large‐area graphene‐based thin film from pristine graphene dispersion is severely impeded by its poor solution processability. In this study, a robust wetting‐induced climbing strategy is reported for transferring the interfacially assembled large‐area ultrathin pristine graphene film. This strategy can quickly convert solvent‐exfoliated pristine graphene dispersion into ultrathin graphene film on various substrates with different materials (glass, metal, plastics, and cloth), shapes (film, fiber, and bulk), and hydrophobic/hydrophilic patterns. It is also applicable to nanoparticles, nanofibers, and other exfoliated 2D nanomaterials for fabricating large‐area ultrathin films. Alternate climbing of different ultrathin nanomaterial films allows a layer‐by‐layer transfer, forming a well‐ordered layered composite film with the integration of multiple pristine nanomaterials at nanometer scale. This powerful strategy would greatly promote the development of solvent‐exfoliated pristine nanomaterials from dispersions to macroscopic thin film materials.  相似文献   

8.
SiGeSn ternaries are grown on Ge‐buffered Si wafers incorporating Si or Sn contents of up to 15 at%. The ternaries exhibit layer thicknesses up to 600 nm, while maintaining a high crystalline quality. Tuning of stoichiometry and strain, as shown by means of absorption measurements, allows bandgap engineering in the short‐wave infrared range of up to about 2.6 µm. Temperature‐dependent photoluminescence experiments indicate ternaries near the indirect‐to‐direct bandgap transition, proving their potential for ternary‐based light emitters in the aforementioned optical range. The ternaries' layer relaxation is also monitored to explore their use as strain‐relaxed buffers, since they are of interest not only for light emitting diodes investigated in this paper but also for many other optoelectronic and electronic applications. In particular, the authors have epitaxially grown a GeSn/SiGeSn multiquantum well heterostructure, which employs SiGeSn as barrier material to efficiently confine carriers in GeSn wells. Strong room temperature light emission from fabricated light emitting diodes proves the high potential of this heterostructure approach.  相似文献   

9.
2D materials have attracted considerable attention due to their exciting optical and electronic properties, and demonstrate immense potential for next‐generation solar cells and other optoelectronic devices. With the scaling trends in photovoltaics moving toward thinner active materials, the atomically thin bodies and high flexibility of 2D materials make them the obvious choice for integration with future‐generation photovoltaic technology. Not only can graphene, with its high transparency and conductivity, be used as the electrodes in solar cells, but also its ambipolar electrical transport enables it to serve as both the anode and the cathode. 2D materials beyond graphene, such as transition‐metal dichalcogenides, are direct‐bandgap semiconductors at the monolayer level, and they can be used as the active layer in ultrathin flexible solar cells. However, since no 2D material has been featured in the roadmap of standard photovoltaic technologies, a proper synergy is still lacking between the recently growing 2D community and the conventional solar community. A comprehensive review on the current state‐of‐the‐art of 2D‐materials‐based solar photovoltaics is presented here so that the recent advances of 2D materials for solar cells can be employed for formulating the future roadmap of various photovoltaic technologies.  相似文献   

10.
All‐nanocrystal (NC)‐based and all‐solution‐processed wearable resistance temperature detectors (RTDs) are introduced. The charge transport mechanisms of Ag NC thin films are engineered through various ligand treatments to design high performance RTDs. Highly conductive Ag NC thin films exhibiting metallic transport behavior with high positive temperature coefficients of resistance (TCRs) are achieved through tetrabutylammonium bromide treatment. Ag NC thin films showing hopping transport with high negative TCRs are created through organic ligand treatment. All‐solution‐based, one‐step photolithography techniques that integrate two distinct opposite‐sign TCR Ag NC thin films into an ultrathin single device are developed to decouple the mechanical effects such as human motion. The unconventional materials design and strategy enables highly accurate, sensitive, wearable and motion‐free RTDs, demonstrated by experiments on moving or curved objects such as human skin, and simulation results based on charge transport analysis. This strategy provides a low cost and simple method to design wearable multifunctional sensors with high sensitivity which could be utilized in various fields such as biointegrated sensors or electronic skin.  相似文献   

11.
Topological crystalline insulators (TCIs) are predicted to be a promising candidate material for ultra‐broadband photodetectors ranging from ultraviolet (UV) to terahertz (THz) due to its gapless surface state and narrow bulk bandgap. However, the low responsivity of TCIs‐based photodetectors limits their further applications. In this regard, a high‐performance photodetector based on SnTe, a recently developed TCI, working in a broadband wavelength range from deep UV to mid‐IR with high responsivity is reported. By taking advantage of the strong light absorption and small bandgap of SnTe, photodetectors based on the as‐grown SnTe crystalline nanoflakes as well as specific short channel length achieve a high responsivity (71.11 A W?1 at 254 nm, 49.03 A W?1 at 635 nm, 10.91 A W?1 at 1550 nm, and 4.17 A W?1 at 4650 nm) and an ultra‐broad spectral response (254–4650 nm) simultaneously. Moreover, for the first time, a durable flexible SnTe photodetector fabricated directly on a polyethylene terephthalate film is demonstrated. These results prove the great potential of TCIs as a promising material for integrated and flexible optoelectronic devices.  相似文献   

12.
The use of tensilely strained Ge nanomembranes as mid‐infrared optical gain media is investigated. Biaxial tensile strain in Ge has the effect of lowering the direct energy bandgap relative to the fundamental indirect one, thereby increasing the internal quantum efficiency for light emission and allowing for the formation of population inversion, until at a strain of about 1.9% Ge is even converted into a direct‐bandgap material. Gain calculations are presented showing that, already at strain levels of about 1.4% and above, Ge films can provide optical gain in the technologically important 2.1–2.5 μm spectral region, with transparency carrier densities that can be readily achieved under realistic pumping conditions. Mechanically stressed Ge nanomembranes capable of accommodating the required strain levels are developed and used to demonstrate strong strain‐enhanced photoluminescence. A detailed analysis of the high‐strain emission spectra also demonstrates that the nanomembranes can be pumped above transparency, and confirms the prediction that biaxial‐strain levels in excess of only 1.4% are required to obtain significant population inversion.  相似文献   

13.
Semiconductor nanowires made of high refractive index materials can couple the incoming light to specific waveguide modes that offer resonant absorption enhancement under the bandgap wavelength, essential for light harvesting, lasing and detection applications. Moreover, the non-trivial ellipticity of such modes can offer near field interactions with chiral molecules, governed by near chiral field. These modes are therefore very important to detect. Here, we present the photo-acoustic spectroscopy as a low-cost, reliable, sensitive and scattering-free tool to measure the spectral position and absorption efficiency of these modes. The investigated samples are hexagonal nanowires with GaAs core; the fabrication by means of lithography-free molecular beam epitaxy provides controllable and uniform dimensions that allow for the excitation of the fundamental resonant mode around 800 nm. We show that the modulation frequency increase leads to the discrimination of the resonant mode absorption from the overall absorption of the substrate. As the experimental data are in great agreement with numerical simulations, the design can be optimized and followed by photo-acoustic characterization for a specific application.  相似文献   

14.
Atomically thin materials face an ongoing challenge of scalability, hampering practical deployment despite their fascinating properties. Tin monosulfide (SnS), a low-cost, naturally abundant layered material with a tunable bandgap, displays properties of superior carrier mobility and large absorption coefficient at atomic thicknesses, making it attractive for electronics and optoelectronics. However, the lack of successful synthesis techniques to prepare large-area and stoichiometric atomically thin SnS layers (mainly due to the strong interlayer interactions) has prevented exploration of these properties for versatile applications. Here, SnS layers are printed with thicknesses varying from a single unit cell (0.8 nm) to multiple stacked unit cells (≈1.8 nm) synthesized from metallic liquid tin, with lateral dimensions on the millimeter scale. It is reveal that these large-area SnS layers exhibit a broadband spectral response ranging from deep-ultraviolet (UV) to near-infrared (NIR) wavelengths (i.e., 280–850 nm) with fast photodetection capabilities. For single-unit-cell-thick layered SnS, the photodetectors show upto three orders of magnitude higher responsivity (927 A W−1) than commercial photodetectors at a room-temperature operating wavelength of 660 nm. This study opens a new pathway to synthesize reproduceable nanosheets of large lateral sizes for broadband, high-performance photodetectors. It also provides important technological implications for scalable applications in integrated optoelectronic circuits, sensing, and biomedical imaging.  相似文献   

15.
Mechanical fragility and insufficient light absorption are two major challenges for thin flexible crystalline Si‐based solar cells. Flexible hybrid single‐walled carbon nanotube (SWNT)/Si solar cells are demonstrated by applying scalable room‐temperature processes for the fabrication of solar‐cell components (e.g., preparation of SWNT thin films and SWNT/Si p–n junctions). The flexible SWNT/Si solar cells present an intrinsic efficiency ≈7.5% without any additional light‐trapping structures. By using these solar cells as model systems, the charge transport mechanisms at the SWNT/Si interface are investigated using femtosecond transient absorption. Although primary photon absorption occurs in Si, transient absorption measurements show that SWNTs also generate and inject excited charge carriers to Si. Such effects can be tuned by controlling the thickness of the SWNTs. Findings from this study could open a new pathway for designing and improving the efficiency of photocarrier generation and absorption for high‐performance ultrathin hybrid SWNT/Si solar cells.  相似文献   

16.
Recently, 2D transition metal dichalcogenides (TMDs) have become intriguing materials in the versatile field of photonics and optoelectronics because of their strong light–matter interaction that stems from the atomic layer thickness, broadband optical response, controllable optoelectronic properties, and high nonlinearity, as well as compatibility. Nevertheless, the low optical cross‐section of 2D‐TMDs inhibits the light–matter interaction, resulting in lower quantum yield. Therefore, hybridizing the 2D‐TMDs with plasmonic nanomaterials has become one of the promising strategies to boost the optical absorption of thin 2D‐TMDs. The appeal of plasmonics is based on their capability to localize and enhance the electromagnetic field and increase the optical path length of light by scattering and injecting hot electrons to TMDs. In this regard, recent achievements with respect to hybridization of the plasmonic effect in 2D‐TMDs systems and its augmented optical and optoelectronic properties are reviewed. The phenomenon of plasmon‐enhanced interaction in 2D‐TMDs is briefly described and state‐of‐the‐art hybrid device applications are comprehensively discussed. Finally, an outlook on future applications of these hybrid devices is provided.  相似文献   

17.
The self‐assembly of block copolymers in thin films provides an attractive approach to patterning 5–100 nm structures. Cross‐linking and photopatterning of the self‐assembled block copolymer morphologies provide further opportunities to structure such materials for lithographic applications, and to also enhance the thermal, chemical, or mechanical stability of such nanostructures to achieve robust templates for subsequent fabrication processes. Here, model lamellar‐forming diblock copolymers of polystyrene and poly(methyl methacrylate) with an epoxide functionality are synthesized by atom transfer radical polymerization. We demonstrate that self‐assembly and cross‐linking of the reactive block copolymer materials in thin films can be decoupled into distinct, controlled process steps using solvent annealing and thermal treatment/ultraviolet exposure, respectively. Conventional optical lithography approaches can also be applied to the cross‐linkable block copolymer materials in thin films and enable simultaneous structure formation across scales—micrometer scale patterns achieved by photolithography and nanostructures via self‐assembly of the block copolymer. Such materials and processes are thus shown to be capable of self‐assembling distinct block copolymers (e.g., lamellae of significantly different periodicity) in adjacent regions of a continuous thin film.  相似文献   

18.
Black phosphorus (BP) is an emerging two‐dimensional (2D) material with a natural bandgap, which has unique anisotropy and extraordinary physical properties. Due to its puckered structure, BP exhibits strong in‐plane anisotropy unlike other layered materials. The bandgap tunability of BP enables a wide range of ultrafast electronics and high frequency optoelectronic applications ranging from telecommunications to thermal imaging covering the nearly entire electromagnetic spectrum, whereas no other 2D material has this functionality. Here, recent advances in the synthesis, fabrication, anisotropic physical properties, and BP‐based devices including field effect transistors (FETs) and photodetectors, are discussed. Recent passivation approaches to address the degradation of BP, which is one of the main challenges to bring this material into real world applications, are also introduced. Finally, a comment is made on the recent developments in other emerging applications, future outlook and challenges ahead in BP research.  相似文献   

19.
Zhang L  d'Avezac M  Luo JW  Zunger A 《Nano letters》2012,12(2):984-991
Finding a Si-based material with strong optical activity at the band-edge remains a challenge despite decades of research. The interest lies in combining optical and electronic functions on the same wafer, while retaining the extraordinary know-how developed for Si. However, Si is an indirect-gap material. The conservation of crystal momentum mandates that optical activity at the band-edge includes a phonon, on top of an electron-hole pair, and hence photon absorption and emission remain fairly unlikely events requiring optically rather thick samples. A promising avenue to convert Si-based materials to a strong light-absorber/emitter is to combine the effects on the band-structure of both nanostructuring and alloying. The number of possible configurations, however, shows a combinatorial explosion. Furthermore, whereas it is possible to readily identify the configurations that are formally direct in the momentum space (due to band-folding) yet do not have a dipole-allowed transition at threshold, the problem becomes not just calculation of band structure but also calculation of absorption strength. Using a combination of a genetic algorithm and a semiempirical pseudopotential Hamiltonian for describing the electronic structures, we have explored hundreds of thousands of possible coaxial core/multishell Si/Ge nanowires with the orientation of [001], [110], and [111], discovering some "magic sequences" of core followed by specific Si/Ge multishells, which can offer both a direct bandgap and a strong oscillator strength. The search has revealed a few simple design principles: (i) the Ge core is superior to the Si core in producing strong bandgap transition; (ii) [001] and [110] orientations have direct bandgap, whereas the [111] orientation does not; (iii) multishell nanowires can allow for greater optical activity by as much as an order of magnitude over plain nanowires; (iv) the main motif of the winning configurations giving direct allowed transitions involves rather thin Si shell embedded within wide Ge shells. We discuss the physical origin of the enhanced optical activity, as well as the effect of possible experimental structural imperfections on optical activity in our candidate core/multishell nanowires.  相似文献   

20.
Organometal halide perovskites are new light‐harvesting materials for lightweight and flexible optoelectronic devices due to their excellent optoelectronic properties and low‐temperature process capability. However, the preparation of high‐quality perovskite films on flexible substrates has still been a great challenge to date. Here, a novel vapor–solution method is developed to achieve uniform and pinhole‐free organometal halide perovskite films on flexible indium tin oxide/poly(ethylene terephthalate) substrates. Based on the as‐prepared high‐quality perovskite thin films, high‐performance flexible photodetectors (PDs) are constructed, which display a nR value of 81 A W?1 at a low working voltage of 1 V, three orders higher than that of previously reported flexible perovskite thin‐film PDs. In addition, these flexible PDs exhibit excellent flexural stability and durability under various bending situations with their optoelectronic performance well retained. This breakthrough on the growth of high‐quality perovskite thin films opens up a new avenue to develop high‐performance flexible optoelectronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号