首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Stretchable and self‐healing (SH) energy storage devices are indispensable elements in energy‐autonomous electronic skin. However, the current collectors are not self‐healable nor intrinsically stretchable, they mostly rely on strain‐accommodating structures that require complex processing, are often limited in stretchability, and suffer from low device packing density and fragility. Here, an SH conductor comprising nickel flakes, eutectic gallium indium particles (EGaInPs), and carboxylated polyurethane (CPU) is presented. An energy storage device is constructed by the two SH electrodes assembled with graphene nanoplatelets sandwiching an ionic‐liquid electrolyte. An excellent electrochemical healability (94% capacity retention upon restretching at 100% after healing from bifurcation) is unveiled, stemming from the complexation modulated redox behavior of EGaIn in the presence of the ligand bis(trifluoromethanesulfonyl)imide, which enhances the reversible Faradaic reaction of Ga. Self‐healing can be achieved where the damaged regions are electrically restored by the flow of liquid metal and mechanically healing activated by the interfacial hydrogen bonding of CPU with an efficiency of 97.5% can be achieved. The SH conductor has an initial conductivity of 2479 S cm?1 that attains a high stretchability with 700% strain, it restores 100% stretchability even after breaking/healing with the electrical healing efficiency of 75%.  相似文献   

2.
Stretchable electronic devices with intrinsically stretchable components have significant inherent advantages, including simple fabrication processes, a high integrity of the stacked layers, and low cost in comparison with stretchable electronic devices based on non‐stretchable components. The research in this field has focused on developing new intrinsically stretchable components for conductors, semiconductors, and insulators. New methodologies and fabrication processes have been developed to fabricate stretchable devices with intrinsically stretchable components. The latest successful examples of stretchable conductors for applications in interconnections, electrodes, and piezoresistive devices are reviewed here. Stretchable conductors can be used for electrode or sensor applications depending on the electrical properties of the stretchable conductors under mechanical strain. A detailed overview of the recent progress in stretchable semiconductors, stretchable insulators, and other novel stretchable materials is also given, along with a discussion of the associated technological innovations and challenges. Stretchable electronic devices with intrinsically stretchable components such as field‐effect transistors (FETs), photodetectors, light‐emitting diodes (LEDs), electronic skins, and energy harvesters are also described and a new strategy for development of stretchable electronic devices is discussed. Conclusions and future prospects for the development of stretchable electronic devices with intrinsically stretchable components are discussed.  相似文献   

3.
Intrinsically stretchable light‐emitting diodes (LEDs) are demonstrated using organometal‐halide‐perovskite/polymer composite emitters. The polymer matrix serves as a microscale elastic connector for the rigid and brittle perovskite and induces stretchability to the composite emissive layers. The stretchable LEDs consist of poly(ethylene oxide)‐modified poly(3,4‐ethylenedioxythiophene) polystyrene sulfonate as a transparent and stretchable anode, a perovskite/polymer composite emissive layer, and eutectic indium–gallium as the cathode. The devices exhibit a turn‐on voltage of 2.4 V, and a maximum luminance intensity of 15 960 cd m?2 at 8.5 V. Such performance far exceeds all reported intrinsically stretchable LEDs based on electroluminescent polymers. The stretchable perovskite LEDs are mechanically robust and can be reversibly stretched up to 40% strain for 100 cycles without failure.  相似文献   

4.
The development of omnidirectionally stretchable pressure sensors with high performance without stretching‐induced interference has been hampered by many challenges. Herein, an omnidirectionally stretchable piezoresistive pressure‐sensing device is demonstrated by combining an omniaxially stretchable substrate with a 3D micropattern array and solution‐printing of electrode and piezoresistive materials. A unique substrate structural design and materials mean that devices that are highly sensitive are rendered, with a stable out‐of‐plane pressure response to both static (sensitivity of 0.5 kPa?1 and limit of detection of 28 Pa) and dynamic pressures and the minimized in‐plane stretching responsiveness (a small strain gauge factor of 0.17), achieved through efficient strain absorption of the electrode and sensing materials. The device can detect human‐body tremors, as well as measure the relative elastic properties of human skin. The omnidirectionally stretchable pressure sensor with a high pressure sensitivity and minimal stretch‐responsiveness yields great potential to skin‐attachable wearable electronics, human–machine interfaces, and soft robotics applications.  相似文献   

5.
Smart skin is expected to be stretchable and tactile for bionic robots as the medium with the ambient environment. Here, a stretchable triboelectric–photonic smart skin (STPS) is reported that enables multidimensional tactile and gesture sensing for a robotic hand. With a grating‐structured metal film as the bioinspired skin stripe, the STPS exhibits a tunable aggregation‐induced emission in a lateral tensile range of 0–160%. Moreover, the STPS can be used as a triboelectric nanogenerator for vertical pressure sensing with a maximum sensitivity of 34 mV Pa?1. The pressure sensing characteristics can remain stable in different stretching conditions, which demonstrates a synchronous and independent sensing property for external stimuli with great durability. By integrating on a robotic hand as a conformal covering, the STPS shows multidimensional mechanical sensing abilities for external touch and different gestures with joints bending. This work has first demonstrated a triboelectric–photonic coupled multifunctional sensing terminal, which may have great applications in human–machine interaction, soft robots, and artificial intelligence.  相似文献   

6.
Soft and stretchable electronic devices are important in wearable and implantable applications because of the high skin conformability. Due to the natural biocompatibility and biodegradability, silk protein is one of the ideal platforms for wearable electronic devices. However, the realization of skin‐conformable electronic devices based on silk has been limited by the mechanical mismatch with skin, and the difficulty in integrating stretchable electronics. Here, silk protein is used as the substrate for soft and stretchable on‐skin electronics. The original high Young's modulus (5–12 GPa) and low stretchability (<20%) are tuned into 0.1–2 MPa and > 400%, respectively. This plasticization is realized by the addition of CaCl2 and ambient hydration, whose mechanism is further investigated by molecular dynamics simulations. Moreover, highly stretchable (>100%) electrodes are obtained by the thin‐film metallization and the formation of wrinkled structures after ambient hydration. Finally, the plasticized silk electrodes, with the high electrical performance and skin conformability, achieve on‐skin electrophysiological recording comparable to that by commercial gel electrodes. The proposed skin‐conformable electronics based on biomaterials will pave the way for the harmonized integration of electronics into human.  相似文献   

7.
Electroactive yarns that are stretchable are desired for many electronic textile applications, including energy storage, soft robotics, and sensing. However, using current methods to produce these yarns, achieving high loadings of electroactive materials and simultaneously demonstrating stretchability is a critical challenge. Here, a one‐step bath electrospinning technique is developed to effectively capture Ti3C2Tx MXene flakes throughout continuous nylon and polyurethane (PU) nanofiber yarns (nanoyarns). With up to ≈90 wt% MXene loading, the resulting MXene/nylon nanoyarns demonstrate high electrical conductivity (up to 1195 S cm?1). By varying the flake size and MXene concentration, nanoyarns achieve stretchability of up to 43% (MXene/nylon) and 263% (MXene/PU). MXene/nylon nanoyarn electrodes offer high specific capacitance in saturated LiClO4 electrolyte (440 F cm?3 at 5 mV s?1), with a wide voltage window of 1.25 V and high rate capability (72% between 5 and 500 mV s?1). As strain sensors, MXene/PU yarns demonstrate a wide sensing range (60% under cyclic stretching), high sensitivity (gauge factor of ≈17 in the range of 20–50% strain), and low drift. Utilizing the stretchability of polymer nanofibers and the electrical and electrochemical properties of MXene, MXene‐based nanoyarns demonstrate potential in a wide range of applications, including stretchable electronics and body movement monitoring.  相似文献   

8.
The development of wearable, all‐in‐one sensors that can simultaneously monitor several hazard conditions in a real‐time fashion imposes the emergent requirement for a smart and stretchable hazard avoidance sensing platform that is stretchable and skin‐like. Multifunctional sensors with these features are problematic and challenging to accomplish. In this context, a multimodal ferrofluid‐based triboelectric nanogenerator (FO‐TENG), featuring sensing capabilities to a variety of hazard stimulus such as a strong magnetic field, noise level, and falling or drowning is reported. The FO‐TENG consists of a deformable elastomer tube filled with a ferrofluid, as a triboelectric layer, surrounded by a patterned copper wire, as an electrode, endowing the FO‐TENG with excellent waterproof ability, conformability, and stretchability (up to 300%). In addition, The FO‐TENG is highly flexible and sustains structural integrity and detection capability under repetitive deformations, including bending and twisting. This FO‐TENG represents a smart multifaceted sensing platform that has a unique capacity in diverse applications including hazard preventive wearables, and remote healthcare monitoring.  相似文献   

9.
In addition to a high specific capacitance, a large stretchability and self‐healing properties are also essential to improve the practicality and reliability of supercapacitors in portable and wearable electronics. However, the integration of multiple functions into one device remains challenging. Here, the construction of a highly stretchable and real‐time omni‐healable supercapacitor is demonstrated by sandwiching the polypyrrole‐incorporated gold nanoparticle/carbon nanotube (CNT)/poly(acrylamide) (GCP@PPy) hydrogel electrodes with a CNT‐free GCP (GP) hydrogel as the electrolyte and chemically soldering an Ag nanowire film to the hydrogel electrode as the current collector. The newly developed dynamic metal‐thiolate (M‐SR, M = Au, Ag) bond‐induced integrated configuration, with an intrinsically powerful electrode and electrolyte, enables the assembled supercapacitor to deliver an areal capacitance of 885 mF cm?2 and an energy density of 123 µWh cm?2, which are among the highest‐reported values for stretchable supercapacitors. Notably, the device exhibits a superhigh stretching strain of 800%, rapid optical healing capability, and significant real‐time healability during the charge–discharge process. The exceptional performance combined with the facile assembly method confirms this multifunctional device as the best performer among all the flexible supercapacitors reported to date.  相似文献   

10.
Human skin is a remarkable organ. It consists of an integrated, stretchable network of sensors that relay information about tactile and thermal stimuli to the brain, allowing us to maneuver within our environment safely and effectively. Interest in large‐area networks of electronic devices inspired by human skin is motivated by the promise of creating autonomous intelligent robots and biomimetic prosthetics, among other applications. The development of electronic networks comprised of flexible, stretchable, and robust devices that are compatible with large‐area implementation and integrated with multiple functionalities is a testament to the progress in developing an electronic skin (e‐skin) akin to human skin. E‐skins are already capable of providing augmented performance over their organic counterpart, both in superior spatial resolution and thermal sensitivity. They could be further improved through the incorporation of additional functionalities (e.g., chemical and biological sensing) and desired properties (e.g., biodegradability and self‐powering). Continued rapid progress in this area is promising for the development of a fully integrated e‐skin in the near future.  相似文献   

11.
For the purpose of stretchable electronics, broad interests have been paid to elastic conductors by which high tensile strain over 100% can be readily achieved. Here, a scalable‐processing, dyeing‐like strategy for highly stretchable polypyrrole elastomer (1450% in strain) is conceived without particular topological design. This approach effectively improves the mechanical properties of the classic insoluble polypyrrole by confined polymerization within an elastic polymer network. In terms of the easy processing, it is technically possible to prepare stretchable electronics with arbitrary shape and size for wearable electronics with low cost. The mechanism of interpenetrated networks coexisting with microphase separation is comprehensively illustrated at molecular scale. The as‐fabricated polypyrrole elastomers are utilized as temperature or strain sensors for automatic fishing and region‐distinct dual signal sensing. Further integration of multiple sensors offers immediate alarm for old people falling at home, which thereby proves its promising potential in practical applications.  相似文献   

12.
On‐skin electronics require conductive, porous, and stretchable materials for a stable operation with minimal invasiveness to the human body. However, porous elastic conductors that simultaneously achieve high conductivity, good stretchability, and durability are rare owing to the lack of proper design for good adhesion between porous elastic polymer and conductive metallic networks. Here, a simple fabrication approach for porous nanomesh‐type elastic conductors is shown by designing a layer‐by‐layer structure of nanofibers/nanowires (NFs/NWs) via interfacial hydrogen bonding. The as‐prepared conductors, consisting of Ag NWs and polyurethane (PU) NFs, simultaneously achieve high conductivity (9190 S cm?1), high stretchability (310%), and good durability (82% resistance increase after 1000 cycles of deformation at 70% tensile strain). The direct contact between the Ag NWs enables the high conductivity. The synergistic effect of the layer‐by‐layer structure and good adhesion between the Ag NWs and the PU NFs enables good mechanical properties. Furthermore, without any adhesive gel/tape, the conductors can be utilized as breathable strain sensors for precise joint motion monitoring, and as breathable sensing electrodes for continuous electrophysiological signal recording.  相似文献   

13.
Stretchable conductors based on eutectic gallium–indium (eGaIn) alloy are patterned on a polychloroprene substrate (neoprene foam) using stencil printing. By tuning the amount of eGaIn on the neoprene substrate, different strain‐sensitivity of electrical resistance is achieved. Conductors with a layer of eGaIn, which adsorbs to the walls of 60–100 µm wide neoprene cells, change their electrical resistance for 5% at 100% strain. When the amount of eGaIn is increased, the cells are filled with eGaIn and the strain‐sensitivity of the electrical resistance rises to 300% at 100% strain. The developed conductors are patterned as stretchable on‐body coils for receiving magnetic signals in a clinical magnetic resonance imaging setup. First images with a stretchable coil are acquired on an orange and compared to the images that are recorded using a rigid copper coil of the same size.  相似文献   

14.
Skin‐like energy devices can be conformally attached to the human body, which are highly desirable to power soft wearable electronics in the future. Here, a skin‐like stretchable fuel cell based on ultrathin gold nanowires (AuNWs) and polymerized high internal phase emulsions (polyHIPEs) scaffolds is demonstrated. The polyHIPEs can offer a high porosity of 80% yet with an overall thickness comparable to human skin. Upon impregnation with electronic inks containing ultrathin (2 nm in diameter) and ultrahigh aspect‐ratio (>10 000) gold nanowires, skin‐like strain‐insensitive stretchable electrodes are successfully fabricated. With such designed strain‐insensitive electrodes, a stretchable fuel cell is fabricated by using AuNWs@polyHIPEs, platinum (Pt)‐modified AuNWs@polyHIPEs, and ethanol as the anode, cathode, and fuel, respectively. The resulting epidermal fuel cell can be patterned and transferred onto skin as “tattoos” yet can offer a high power density of 280 µW cm?2 and a high durability (>90% performance retention under stretching, compression, and twisting). The results presented here demonstrate that this skin‐thin, porous, yet stretchable electrode is essentially multifunctional, simultaneously serving as a current collector, an electrocatalyst, and a fuel host, indicating potential applications to power future soft wearable 2.0 electronics for remote healthcare and soft robotics.  相似文献   

15.
The ever‐growing overlap between stretchable electronic devices and wearable healthcare applications is igniting the discovery of novel biocompatible and skin‐like materials for human‐friendly stretchable electronics fabrication. Amongst all potential candidates, hydrogels with excellent biocompatibility and mechanical features close to human tissues are constituting a promising troop for realizing healthcare‐oriented electronic functionalities. In this work, based on biocompatible and stretchable hydrogels, a simple paradigm to prototype stretchable electronics with an embedded three‐dimensional (3D) helical conductive layout is proposed. Thanks to the 3D helical structure, the hydrogel electronics present satisfactory mechanical and electrical robustness under stretch. In addition, reusability of stretchable electronics is realized with the proposed scenario benefiting from the swelling property of hydrogel. Although losing water would induce structure shrinkage of the hydrogel network and further undermine the function of hydrogel in various applications, the worn‐out hydrogel electronics can be reused by simply casting it in water. Through such a rehydration procedure, the dehydrated hydrogel can absorb water from the surrounding and then the hydrogel electronics can achieve resilience in mechanical stretchability and electronic functionality. Also, the ability to reflect pressure and strain changes has revealed the hydrogel electronics to be promising for advanced wearable sensing applications.  相似文献   

16.
In the past decade, high performance stretchable sensors have found many exciting applications including epidermal and in vivo monitors, minimally invasive surgical tools, as well as deployable structure health monitors (SHM). Although wafer based electronics are known to be rigid and planar, recent advances in manufacture and mechanics have made intrinsically stiff and brittle inorganic electronic materials stretchable and compliant. This review article summarizes the most recent mechanics studies on stretchable sensors composed of ceramic and metallic functional materials. The discussion will focus around the most popular “island plus serpentine” design where active electronic or sensing components are housed on an array of isolated, micro-scale islands which are interconnected by electrically conductive, stretchable, serpentine thin films. The mechanics of polymer supported islands, freestanding serpentines, and polymer supported serpentines will be introduced. The effects of feature geometry and polymer substrate on the stretchability, compliance, as well as functionality of the sensor system will be discussed in details. The tradeoff between mechanics and functionality gives rise to the challenge of simultaneously optimizing the structure and performance of stretchable sensors.  相似文献   

17.
A solid‐state lithium‐ion battery, in which all components (current collector, anode and cathode, electrolyte, and packaging) are stretchable, is introduced, giving rise to a battery design with mechanical properties that are compliant with flexible electronic devices and elastic wearable systems. By depositing Ag microflakes as a conductive layer on a stretchable carbon–polymer composite, a current collector with a low sheet resistance of ≈2.7 Ω □?1 at 100% strain is obtained. Stretchable electrodes are fabricated by integrating active materials with the elastic current collector. A polyacrylamide–“water‐in‐salt” electrolyte is developed, offering high ionic conductivity of 10?3 to 10?2 S cm?1 at room temperature and outstanding stretchability up to ≈300% of its original length. Finally, all these components are assembled into a solid‐state lithium‐ion full cell in thin‐film configuration. Thanks to the deformable individual components, the full cell functions when stretched, bent, or even twisted. For example, after stretching the battery to 50%, a reversible capacity of 28 mAh g?1 and an average energy density of 20 Wh kg?1 can still be obtained after 50 cycles at 120 mA g?1, confirming the functionality of the battery under extreme mechanical stress.  相似文献   

18.
Stretchable and conformal humidity sensors that can be attached to the human body for continuously monitoring the humidity of the environment around the human body or the moisture level of the human skin can play an important role in electronic skin and personal healthcare applications.However,most stretchable humidity sensors are based on the geometric engineering of non-stretchable components and only a few detailed studies are available on stretchable humidity sensors under applied mechanical deformations.In this paper,we propose a transparent,stretchable humidity sensor with a simple fabrication process,having intrinsically stretchable components that provide high stretchability,sensitivity,and stability along with fast response and relaxation time.Composed of reduced graphene oxide-polyurethane composites and an elastomeric conductive electrode,this device exhibits impressive response and relaxation time as fast as 3.5 and 7 s,respectively.The responsivity and the response and relaxation time of the device in the presence of humidity remain almost unchanged under stretching up to a strain of 60% and after 10,000 stretching cycles at a 40% strain.Further,these stretchable humidity sensors can be easily and conformally attached to a finger for monitoring the humidity levels of the environment around the human body,wet objects,or human skin.  相似文献   

19.
A stretchable, transparent, and body‐attachable chemical sensor is assembled from the stretchable nanocomposite network film for ultrasensitive chemical vapor sensing. The stretchable nanocomposite network film is fabricated by in situ preparation of polyaniline/MoS2 (PANI/MoS2) nanocomposite in MoS2 suspension and simultaneously nanocomposite deposition onto prestrain elastomeric polydimethylsiloxane substrate. The assembled stretchable electronic sensor demonstrates ultrasensitive sensing performance as low as 50 ppb, robust sensing stability, and reliable stretchability for high‐performance chemical vapor sensing. The ultrasensitive sensing performance of the stretchable electronic sensors could be ascribed to the synergistic sensing advantages of MoS2 and PANI, higher specific surface area, the reliable sensing channels of interconnected network, and the effectively exposed sensing materials. It is expected to hold great promise for assembling various flexible stretchable chemical vapor sensors with ultrasensitive sensing performance, superior sensing stability, reliable stretchability, and robust portability to be potentially integrated into wearable electronics for real‐time monitoring of environment safety and human healthcare.  相似文献   

20.
Printing technology can be used for manufacturing stretchable electrodes, which represent essential parts of wearable devices requiring relatively high degrees of stretchability and conductivity. In this work, a strategy for fabricating printable and highly stretchable conductors are proposed by transferring printed Ag ink onto stretchable substrates comprising Ecoflex elastomer and tough hydrogel layers using a water‐soluble tape. The elastic modulus of the produced hybrid film is close to that of the hydrogel layer, since the thickness of Ecoflex elastomer film coated on hydrogel is very thin (30 µm). Moreover, the fabricated conductor on hybrid film is stretched up to 1780% strain. The described transfer method is simpler than other techniques utilizing elastomer stamps or sacrificial layers and enables application of printable electronics to the substrates with low elastic moduli (such as hydrogels). The integration of printed electronics with skin‐like low‐modulus substrates can be applied to make wearable devices more comfortable for human skin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号