首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A method is demonstrated to prepare graphene dispersions at high concentrations, up to 1.2 mg mL?1, with yields of up to 4 wt% monolayers. This process relies on low‐power sonication for long times, up to 460 h. Transmission electron microscopy shows the sonication to reduce the flake size, with flake dimensions scaling as t?1/2. However, the mean flake length remains above 1 µm for all sonication times studied. Raman spectroscopy shows defects are introduced by the sonication process. However, detailed analysis suggests that predominately edge, rather than basal‐plane, defects are introduced. These dispersions are used to prepare high‐quality free‐standing graphene films. The dispersions can be heavily diluted by water without sedimentation or aggregation. This method facilitates graphene processing for a range of applications.  相似文献   

2.
The ultralow friction between atomic layers of hexagonal MoS2, an important solid lubricant and additive of lubricating oil, is thought to be responsible for its excellent lubricating performances. However, the quantitative frictional properties between MoS2 atomic layers have not been directly tested in experiments due to the lack of conventional tools to characterize the frictional properties between 2D atomic layers. Herein, a versatile method for studying the frictional properties between atomic‐layered materials is developed by combining the in situ scanning electron microscope technique with a Si nanowire force sensor, and the friction tests on the sliding between atomic‐layered materials down to monolayers are reported. The friction tests on the sliding between incommensurate MoS2 monolayers give a friction coefficient of ≈10?4 in the regime of superlubricity. The results provide the first direct experimental evidence for superlubricity between MoS2 atomic layers and open a new route to investigate frictional properties of broad 2D materials.  相似文献   

3.
Recent developments in the exfoliation, dispersion, and processing of pristine graphene (i.e., non‐oxidized graphene) are described. General metrics are outlined that can be used to assess the quality and processability of various “graphene” products, as well as metrics that determine the potential for industrial scale‐up. The pristine graphene production process is categorized from a chemical engineering point of view with three key steps: i) pretreatment, ii) exfoliation, and iii) separation. How pristine graphene colloidal stability is distinct from the exfoliation step and is dependent upon graphene interactions with solvents and dispersants are extensively reviewed. Finally, the challenges and opportunities of using pristine graphene as nanofillers in polymer composites, as well as as building blocks for macrostructure assemblies are summarized in the context of large‐scale production.  相似文献   

4.
采用高速剪切机液相剥离法, 在胆酸钠的水溶液中将鳞片石墨剥离, 离心得到石墨烯分散液。AFM、TEM、Raman表征结果发现, 剥离出的石墨烯厚度小于4层, 尺寸大约在2~3 μm, 高质量缺陷少(ID/IG≈0.15)。将石墨烯分散液冷冻干燥后与银粉共同添加到硅橡胶中, 制备出导热硅橡胶。利用稳态热流法测试导热硅橡胶的导热系数发现, 当添加3vol%石墨烯时, 复合材料的导热系数由未添加石墨烯时的4.900 W/(m·K)提高到12.367 W/(m·K)。综上所述, 通过液相剥离法成功制备出缺陷较少的少层石墨烯, 能够与银粉协同提高导热硅橡胶的导热系数。  相似文献   

5.
A novel transparent, flexible, graphene channel floating‐gate transistor memory (FGTM) device is fabricated using a graphene oxide (GO) charge trapping layer on a plastic substrate. The GO layer, which bears ammonium groups (NH3+), is prepared at the interface between the crosslinked PVP (cPVP) tunneling dielectric and the Al2O3 blocking dielectric layers. Important design rules are proposed for a high‐performance graphene memory device: i) precise doping of the graphene channel, and ii) chemical functionalization of the GO charge trapping layer. How to control memory characteristics by graphene doping is systematically explained, and the optimal conditions for the best performance of the memory devices are found. Note that precise control over the doping of the graphene channel maximizes the conductance difference at a zero gate voltage, which reduces the device power consumption. The proposed optimization via graphene doping can be applied to any graphene channel transistor‐type memory device. Additionally, the positively charged GO (GO–NH3+) interacts electrostatically with hydroxyl groups of both UV‐treated Al2O3 and PVP layers, which enhances the interfacial adhesion, and thus the mechanical stability of the device during bending. The resulting graphene–graphene oxide FGTMs exhibit excellent memory characteristics, including a large memory window (11.7 V), fast switching speed (1 μs), cyclic endurance (200 cycles), stable retention (105 s), and good mechanical stability (1000 cycles).  相似文献   

6.
7.
Achieving the full control over the production as well as processability of high‐quality graphene represents a major challenge with potential interest in the field of fabrication of multifunctional devices. The outstanding effort dedicated to tackle this challenge in the last decade revealed that certain organic molecules are capable of leveraging the exfoliation of graphite with different efficiencies. Here, a fundamental understanding on a straightforward supramolecular approach for producing homogenous dispersions of unfunctionalized and non‐oxidized graphene nanosheets in four different solvents is attained, namely N‐methyl‐2‐pyrrolidinone, N,N‐dimethylformamide, ortho‐dichlorobenzene, and 1,2,4‐trichlorobenzene. In particular, a comparative study on the liquid‐phase exfoliation of graphene in the presence of linear alkanes of different lengths terminated by a carboxylic‐acid head group is performed. These molecules act as graphene dispersion‐stabilizing agents during the exfoliation process. The efficiency of the exfoliation in terms of concentration of exfoliated graphene is found to be proportional to the length of the employed fatty acid. Importantly, a high percentage of single‐layer graphene flakes is revealed by high‐resolution transmission electron microscopy and Raman spectroscopy analyses. A simple yet effective thermodynamic model is developed to interpret the chain‐length dependence of the exfoliation yield. This approach relying on the synergistic effect of a ad‐hoc solvent and molecules to promote the exfoliation of graphene in liquid media represents a promising and modular strategy towards the rational design of improved dispersion‐stabilizing agents.  相似文献   

8.
9.
A facile and high‐yield approach to the preparation of few‐layer graphene (FLG) by electrochemical intercalation exfoliation (EIE) of expanded graphite in sulfuric acid electrolyte is reported. Stage‐1 H2SO4‐graphite intercalation compound is used as a key intermediate in EIE to realize the efficient exfoliation. The yield of the FLG sheets (<7 layers) with large lateral sizes (tens of microns) is more than 75% relative to the total amount of starting expanded graphite. A low degree of oxygen functionalization existing in the prepared FLG flakes enables them to disperse effectively, which contributes to the film‐forming characteristics of the FLG flakes. These electrochemically exfoliated FLG flakes are integrated into several kinds of macroscopic graphene structures. Flexible and freestanding graphene papers made of the FLG flakes retain excellent conductivity (≈24 500 S m?1). Three‐dimensional (3D) graphene foams with light weight are fabricated from the FLG flakes by the use of Ni foams as self‐sacrifice templates. Furthermore, 3D graphene/Ni foams without any binders, which are used as supercapacitor electrodes in aqueous electrolyte, provide the specific capacitance of 113.2 F g?1 at a current density of 0.5 A g?1, retaining 90% capacitance after 1000 cycles.  相似文献   

10.
Silicon‐based biomaterials play an indispensable role in biomedical engineering; however, due to the lack of intrinsic functionalities of silicon, the applications of silicon‐based nanomaterials are largely limited to only serving as carriers for drug delivery systems. Meanwhile, the intrinsically poor biodegradation nature for silicon‐based biomaterials as typical inorganic materials also impedes their further in vivo biomedical use and clinical translation. Herein, by the rational design and wet chemical exfoliation synthesis of the 2D silicene nanosheets, traditional 0D nanoparticulate nanosystems are transformed into 2D material systems, silicene nanosheets (SNSs), which feature an intriguing physiochemical nature for photo‐triggered therapeutics and diagnostic imaging and greatly favorable biological effects of biocompatibility and biodegradation. In combination with DFT‐based molecular dynamics (MD) calculations, the underlying mechanism of silicene interactions with bio‐milieu and its degradation behavior are probed under specific simulated physiological conditions. This work introduces a new form of silicon‐based biomaterials with 2D structure featuring biodegradability, biocompatibility, and multifunctionality for theranostic nanomedicine, which is expected to promise high clinical potentials.  相似文献   

11.
12.
Increasing the mechanical durability of large‐area polycrystalline single‐atom‐thick materials is a necessary step toward the development of practical and reliable soft electronics based on these materials. Here, it is shown that the surface assembly of organosilane by weak epitaxy forms nanometer‐thick organic patches on a monolayer graphene surface and dramatically increases the material's resistance to harsh postprocessing environments, thereby increasing the number of ways in which graphene can be processed. The nanopatched graphene with the improved mechanical durability enables stable operation when used as transparent electrodes of wearable strain sensors. Also, the nanopatched graphene applied as an electrode modulates the molecular orientation of deposited organic semiconductor layers, and yields favorable nominal charge injection for organic transistors. These results demonstrate the potential for use of self‐assembled organic nanopatches in graphene‐based soft electronics.  相似文献   

13.
2D nanocarbon‐based materials with controllable pore structures and hydrophilic surface show great potential in electrochemical energy storage systems including lithium sulfur (Li–S) batteries. This paper reports a thermal exfoliation of metal–organic framework crystals with intrinsic 2D structure into multilayer graphene stacks. This family of nanocarbon stacks is composed of well‐preserved 2D sheets with highly accessible interlayer macropores, narrowly distributed 7 Å micropores, and ever most polar pore walls. The surface polarity is quantified both by its ultrahigh water vapor uptake of 14.3 mmol g?1 at low relative pressure of P /P 0 = 0.4 and ultrafast water wetting capability in less than 10.0 s. Based on the structural merits, this series hydrophilic multilayer graphene stack is showcased as suitable model cathode host for unveiling the challenging surface chemistry issue in Li–S batteries.  相似文献   

14.
以膨胀石墨为原料,采用液相剥离法和改进Hummers氧化石墨工艺,对氧化石墨进行肼预还原和高温还原,进行了SEM、TEM、Raman以及EDX分析,结果表明,该方法可以制备出微米量级的高质量、高浓度、高产量的石墨烯,又运用SRV试验机检测了石墨烯作为润滑油添加剂的摩擦磨损性能,并对其润滑机理进行探讨。  相似文献   

15.
16.
Metal–semiconductor interfaces, known as Schottky junctions, have long been hindered by defects and impurities. Such imperfections dominate the electrical characteristics of the junction by pinning the metal Fermi energy. Here, a graphene–WSe2 p‐type Schottky junction, which exhibits a lack of Fermi level pinning, is studied. The Schottky junction displays near‐ideal diode characteristics with large gate tunability and small leakage currents. Using a gate electrostatically coupled to the WSe2 channel to tune the Schottky barrier height, the Schottky–Mott limit is probed in a single device. As a special manifestation of the tunable Schottky barrier, a diode with a dynamically controlled ideality factor is demonstrated.  相似文献   

17.
18.
19.
The ultimate performance of a solid state device is limited by the restricted number of crystalline substrates that are available for epitaxial growth. As a result, only a small fraction of semiconductors are usable. This study describes a novel concept for a tunable compliant substrate for epitaxy, based on a graphene–porous silicon nanocomposite, which extends the range of available lattice constants for epitaxial semiconductor alloys. The presence of graphene and its effect on the strain of the porous layer lattice parameter are discussed in detail and new remarkable properties are demonstrated. These include thermal stability up to 900 °C, lattice tuning up to 0.9 % mismatch, and compliance under stress for virtual substrate thicknesses of several micrometers. A theoretical model is proposed to define the compliant substrate design rules. These advances lay the foundation for the fabrication of a compliant substrate that could unlock the lattice constant restrictions for defect‐free new epitaxial semiconductor alloys and devices.  相似文献   

20.
Due to their extraordinary properties, boron nitride nanosheets (BNNSs) have great promise for many applications. However, the difficulty of their efficient preparation and their poor dispersibility in liquids are the current factors that limit this. A simple yet efficient sugar‐assisted mechanochemical exfoliation (SAMCE) method is developed here to simultaneously achieve their exfoliation and functionalization. This method has a high actual exfoliation yield of 87.3%, and the resultant BNNSs are covalently grafted with sugar (sucrose) molecules, and are well dispersed in both water and organic liquids. A new mechanical force–induced exfoliation and chemical grafting mechanism is proposed based on experimental and density functional theory investigations. Thanks to the good dispersibility of the nanosheets, flexible and transparent BNNS/poly(vinyl alcohol) (PVA) composite films with multifunctionality is fabricated. Compared to pure PVA films, the composite films have a remarkably improved tensile strength and thermal dissipation capability. Noteworthy, they are flame retardant and can effectively block light from the deep blue to the UV region. This SAMCE production method has proven to be highly efficient, green, low cost, and scalable, and is extended to the exfoliation and functionalization of other two‐dimensional (2D) materials including MoS2, WS2, and graphite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号