首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
High‐performance and inexpensive platinum‐group‐metal (PGM)‐free catalysts for the oxygen reduction reaction (ORR) in challenging acidic media are crucial for proton‐exchange‐membrane fuel cells (PEMFCs). Catalysts based on Fe and N codoped carbon (Fe–N–C) have demonstrated promising activity and stability. However, a serious concern is the Fenton reactions between Fe2+ and H2O2 generating active free radicals, which likely cause degradation of the catalysts, organic ionomers within electrodes, and polymer membranes used in PEMFCs. Alternatively, Co–N–C catalysts with mitigated Fenton reactions have been explored as a promising replacement for Fe and PGM catalysts. Therefore, herein, the focus is on Co–N–C catalysts for the ORR relevant to PEMFC applications. Catalyst synthesis, structure/morphology, activity and stability improvement, and reaction mechanisms are discussed in detail. Combining experimental and theoretical understanding, the aim is to elucidate the structure–property correlations and provide guidance for rational design of advanced Co catalysts with a special emphasis on atomically dispersed single‐metal‐site catalysts. In the meantime, to reduce H2O2 generation during the ORR on the Co catalysts, potential strategies are outlined to minimize the detrimental effect on fuel cell durability.  相似文献   

2.
3.
Developing highly active and stable cathode catalysts is of pivotal importance for proton exchange membrane fuel cells (PEMFCs). While carbon‐supported nanostructured Pt‐based catalysts have so far been the most active cathode catalysts, their durability and single‐cell performance are yet to be improved. Herein, self‐supported mesostructured Pt‐based bimetallic (Meso‐PtM; M = Ni, Fe, Co, Cu) nanospheres containing an intermetallic phase are reported, which can combine the beneficial effects of transition metals (M), an intermetallic phase, a 3D interconnected framework, and a mesoporous structure. Meso‐PtM nanospheres show enhanced oxygen reduction reaction (ORR) activity, compared to Pt black and Pt/C catalysts. Notably, Meso‐PtNi containing an intermetallic phase exhibits ultrahigh stability, showing enhanced ORR activity even after 50 000 potential cycles, whereas Pt black and Pt/C undergo dramatic degradation. Importantly, Meso‐PtNi with an intermetallic phase also demonstrated superior activity and durability when used in a PEMFC single‐cell, with record‐high initial mass and specific activities.  相似文献   

4.
Herein, an approach is reported for fabrication of Co‐Nx‐embedded 1D porous carbon nanofibers (CNFs) with graphitic carbon‐encased Co nanoparticles originated from metal–organic frameworks (MOFs), which is further explored as a bifunctional electrocatalyst for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Electrochemical results reveal that the electrocatalyst prepared by pyrolysis at 1000 °C (CoNC‐CNF‐1000) exhibits excellent catalytic activity toward ORR that favors the four‐electron ORR process and outstanding long‐term stability with 86% current retention after 40 000 s. Meanwhile, it also shows superior electrocatalytic activity toward OER, reaching a lower potential of 1.68 V at 10 mA cm?2 and a potential gap of 0.88 V between the OER potential (at 10 mA cm?2) and the ORR half‐wave potential. The ORR and OER performance of CoNC‐CNF‐1000 have outperformed commercial Pt/C and most nonprecious‐metal catalysts reported to date. The remarkable ORR and OER catalytic performance can be mainly attributable to the unique 1D structure, such as higher graphitization degree beneficial for electronic mobility, hierarchical porosity facilitating the mass transport, and highly dispersed CoNxC active sites functionalized carbon framework. This strategy will shed light on the development of other MOF‐based carbon nanofibers for energy storage and electrochemical devices.  相似文献   

5.
In this work, large size (i.e., diameter > 100 nm) graphene tubes with nitrogen‐doping are prepared through a high‐temperature graphitization process of dicyandiamide (DCDA) and Iron(II) acetate templated by a novel metal–organic framework (MIL‐100(Fe)). The nitrogen‐doped graphene tube (N‐GT)‐rich iron‐nitrogen‐carbon (Fe‐N‐C) catalysts exhibit inherently high activity towards the oxygen reduction reaction (ORR) in more challenging acidic media. Furthermore, aiming to improve the activity and stability of conventional Pt catalysts, the ORR active N‐GT is used as a matrix to disperse Pt nanoparticles in order to build a unique hybrid Pt cathode catalyst. This is the first demonstration of the integration of a highly active Fe‐N‐C catalyst with Pt nanoparticles. The synthesized 20% Pt/N‐GT composite catalysts demonstrate significantly enhanced ORR activity and H2‐air fuel cell performance relative to those of 20% Pt/C, which is mainly attributed to the intrinsically active N‐GT matrix along with possible synergistic effects between the non‐precious metal active sites and the Pt nanoparticles. Unlike traditional Pt/C, the hybrid catalysts exhibit excellent stability during the accelerated durability testing, likely due to the unique highly graphitized graphene tube morphologies, capable of providing strong interaction with Pt nanoparticles and then preventing their agglomeration.  相似文献   

6.
It is urgent to develop new kinds of low‐cost and high‐performance nonprecious metal (NPM) catalysts as alternatives to Pt‐based catalysts for oxygen reduction reaction (ORR) in fuel cells and metal–air batteries, which have been proved to be efficient to meet the challenge of increase of global energy demand and CO2 emissions. Here, an economical and sustainable method is developed for the synthesis of Fe, N codoped carbon nanofibers (Fe–N/CNFs) aerogels as efficient NPM catalysts for ORR via a mild template‐directed hydrothermal carbonization (HTC) process, where cost‐effective biomass‐derived d (+)‐glucosamine hydrochloride and ferrous gluconate are used as precursors and recyclable ultrathin tellurium nanowires are used as templates. The prepared Fe/N‐CNFs catalysts display outstanding ORR activity, i.e., onset potential of 0.88 V and half‐wave potential of 0.78 V versus reversible hydrogen electrode in an alkaline medium, which is highly comparable to that of commercial Pt/C (20 wt% Pt) catalyst. Furthermore, the Fe/N‐CNFs catalysts exhibit superior long‐term stability and better tolerance to the methanol crossover effect than the Pt/C catalyst in both alkaline and acidic electrolytes. This work suggests the great promise of developing new families of NPM ORR catalysts by the economical and sustainable HTC process.  相似文献   

7.
Exploration of high‐efficiency, economical, and ultrastable electrocatalysts for the oxygen reduction reaction (ORR) to substitute precious Pt is of great significance in electrochemical energy conversion devices. Single‐atom catalysts (SACs) have sparked tremendous interest for their maximum atom‐utilization efficiency and fascinating properties. Therefore, the development of effective synthetic methodology toward SACs becomes highly imperative yet still remains greatly challenging. Herein, a reliable SiO2‐templated strategy is elaborately designed to synthesize atomically dispersed Fe atoms anchored on N‐doped carbon nanospheres (denoted as Fe–N–C HNSs) using the cheap and sustainable biomaterial of histidine (His) as the N and C precursor. By virtue of the numerous atomically dispersed Fe–N4 moieties and unique spherical hollow architecture, the as‐fabricated Fe–N–C HNSs exhibit excellent ORR performance in alkaline medium with outstanding activity, high long‐term stability, and superior tolerance to methanol crossover, exceeding the commercial Pt/C catalyst and most previously reported non‐precious‐metal catalysts. This present synthetic strategy will provide new inspiration to the fabrication of various high‐efficiency single‐atom catalysts for diverse applications.  相似文献   

8.
Efficient, low‐cost catalysts are desirable for the sluggish oxygen reduction reaction (ORR). Herein, UIO‐66‐NH2‐derived multi‐element (Fe, S, N) co‐doped porous carbon catalyst is reported, Fe/N/S‐PC, with an octahedral morphology, a well‐defined mesoporous structure, and highly dispersed doping elements, synthesized by a double‐solvent diffusion‐pyrolysis method (DSDPM). The morphology of the UIO‐66‐NH2 precursor is perfectly inherited by the derived carbon material, resulting in a high surface area, a well‐defined mesoporous structure, and atomic‐level dispersion of the doping elements. Fe/N/S‐PC demonstrates outstanding catalytic activity and durability for the ORR in both alkaline and acidic solutions. In 0.1 m KOH, its half‐potential reaches 0.87 V (vs reversible hydrogen electrode (RHE)), 30 mV more positive than that of a 20 wt% Pt/C catalyst. In 0.1 m HClO4, it reaches 0.785 V (vs RHE), only 65 mV less than that of Pt/C. The catalyst also exhibits excellent performance in acidic hydrogen/oxygen proton exchange membrane fuel cells. A membrane electrode assembly (MEA) with the catalyst as the cathode reaches 700 mA·cm‐2 at 0.6 V and a maximum power density of 553 mW·cm‐2, ranking it among the best MEAs with a nonprecious metal catalyst as the cathode.  相似文献   

9.
Developing efficient and low‐cost defective carbon‐based catalysts for the oxygen reduction reaction (ORR) is essential to metal–air batteries and fuel cells. Active sites engineering toward these catalysts is highly desirable but challenging to realize boosted catalytic performance. Herein, a sandwich‐like confinement route to achieve the controllable regulation of active sites for carbon‐based catalysts is reported. In particular, three distinct catalysts including metal‐free N‐doped carbon (NC), single Co atoms dispersed NC (Co–N–C), and Co nanoparticles‐contained Co–N–C (Co/Co–N–C) are controllably realized and clearly identified by synchrotron radiation‐based X‐ray spectroscopy. Electrochemical measurements suggest that the Co/Co–N–C catalyst delivers optimized ORR performance due to the rich Co–Nx active sites and their synergistic effect with metallic Co nanoparticles. This work provides deep insight for rationally designing efficient ORR catalyst based on active sites engineering.  相似文献   

10.
Increasing catalytic activity and durability of atomically dispersed metal–nitrogen–carbon (M–N–C) catalysts for the oxygen reduction reaction (ORR) cathode in proton-exchange-membrane fuel cells remains a grand challenge. Here, a high-power and durable Co–N–C nanofiber catalyst synthesized through electrospinning cobalt-doped zeolitic imidazolate frameworks into selected polyacrylonitrile and poly(vinylpyrrolidone) polymers is reported. The distinct porous fibrous morphology and hierarchical structures play a vital role in boosting electrode performance by exposing more accessible active sites, providing facile electron conductivity, and facilitating the mass transport of reactant. The enhanced intrinsic activity is attributed to the extra graphitic N dopants surrounding the CoN4 moieties. The highly graphitized carbon matrix in the catalyst is beneficial for enhancing the carbon corrosion resistance, thereby promoting catalyst stability. The unique nanoscale X-ray computed tomography verifies the well-distributed ionomer coverage throughout the fibrous carbon network in the catalyst. The membrane electrode assembly achieves a power density of 0.40 W cm−2 in a practical H2/air cell (1.0 bar) and demonstrates significantly enhanced durability under accelerated stability tests. The combination of the intrinsic activity and stability of single Co sites, along with unique catalyst architecture, provide new insight into designing efficient PGM-free electrodes with improved performance and durability.  相似文献   

11.
The development of low platinum-based alloy electrocatalysts is crucial to accelerate the commercialization of fuel cells, yet remains a synthetic challenge and an incompatibility between activity and stability. Herein, a facile procedure to fabricate a high-performance composite that comprises Pt–Co intermetallic nanoparticles (IMNs) and Co, N co-doped carbon (Co-N-C) electrocatalyst is proposed. It is prepared by direct annealing of homemade carbon black-supported Pt nanoparticles (Pt/KB) covered with a Co-phenanthroline complex. During this process, most of Co atoms in the complex are alloyed with Pt to form ordered Pt–Co IMNs, while some Co atoms are atomically dispersed and doped in the framework of superthin carbon layer derived from phenanthroline, which is coordinated with N to form Co–Nx moieties. Moreover, the Co-N-C film obtained from complex is observed to cover the surface of Pt–Co IMNs, which prevent the dissolution and agglomeration of nanoparticles. The composite catalyst exhibits high activity and stability toward oxygen reduction reactions (ORR) and methanol oxidation reactions (MOR), delivering outstanding mass activities of 1.96 and 2.92 A mgPt−1 for ORR and MOR respectively, owing to the synergistic effect of Pt–Co IMNs and Co-N-C film. This study may provide a promising strategy to improve the electrocatalytic performance of Pt-based catalysts.  相似文献   

12.
Developing a highly active, stable, and efficient non‐noble metal‐free functional electrocatalyst to supplant the benchmark Pt/C‐based catalysts in practical fuel cell applications remains a stupendous challenge. A rational strategy is developed to directly anchor highly active and dispersed copper (Cu) nanospecies on mesoporous fullerenes (referred to as Cu‐MFC60) toward enhancing oxygen reduction reaction (ORR) electrocatalysis. The preparation of Cu‐MFC60 involves i) the synthesis of ordered MFC60 via the prevalent nanohard templating technique and ii) the postfunctionalization of MFC60 with finely distributed Cu nanospecies through incipient wet impregnation. The concurrence of Cu and cuprous oxide nanoparticles in the as‐developed Cu‐MFC60 samples through relevant material characterizations is affirmed. The optimized ORR catalyst, Cu(15%)‐MFC60, exhibits superior electrocatalytic ORR characteristics with an onset potential of 0.860 vs reversible hydrogen electrode, diffusion‐limiting current density (?5.183 mA cm?2), improved stability, and tolerance to methanol crossover along with a high selectivity (four‐electron transfer). This enhanced ORR performance can be attributed to the rapid mass transfer and abundant active sites owing to the synergistic coupling effects arising from the mixed copper nanospecies and the fullerene framework.  相似文献   

13.
质子交换膜燃料电池的主要商用催化剂是碳负载铂纳米粒子体系,其中碳的形式主要是碳黑。然而Pt属于贵金属,价格高、储量低,严重阻碍了PEMFCs的商业化进程。新型碳基纳米材料的不断涌现以及对其性能研究的不断深入,为解决上述问题带来了可能。越来越多的研究显示,基于新型碳基纳米材料的担载体系,不但能够提高Pt的利用率,降低所需的Pt担载量,还能提升催化剂的稳定性和催化活性等,从而高效地提升担载型催化剂的性价比。概述了近年来碳基纳米材料作质子交换膜燃料电池催化剂载体的研究进展,并讨论了未来的发展方向以促进质子交换膜燃料电池的大规模商用。  相似文献   

14.
Rational design of cost‐effective, nonprecious metal‐based catalysts with desirable oxygen reduction reaction (ORR) performance is extremely important for future fuel cell commercialization, etc. Herein, a new type of ORR catalyst of Co‐N‐doped mesoporous carbon hollow sphere (Co‐N‐mC) was developed by pyrolysis from elaborately fabricated polystyrene@polydopamine‐Co precursors. The obtained catalysts with active Co sites distributed in highly graphitized mesoporous N‐doped carbon hollow spheres exhibited outstanding ORR activity with an onset potential of 0.940 V, a half‐wave potential of 0.851 V, and a small Tafel slope of 45 mV decade?1 in 0.1 m KOH solution, which was comparable to that of the Pt/C catalyst (20%, Alfa). More importantly, they showed superior durability with little current decline (less than 4%) in the chronoamperometric evaluation over 60 000 s. These features make the Co‐N‐mC one of the best nonprecious‐metal catalysts to date for ORR in alkaline condition.  相似文献   

15.
Recently, nonnoble‐metal catalysts such as a metal coordinated to nitrogen doped in a carbon matrix have been reported to exhibit superior oxygen reduction reaction (ORR) activity in alkaline media. In this work, Co2P nanoparticles supported on heteroatom‐doped carbon catalysts (NBSCP) are developed with an eco‐friendly synthesis method using bean sprouts. NBSCP can be easily synthesized through metal precursor absorption and carbonization at a high temperature. It shows a very large specific surface area with various dopants such as nitrogen, phosphorus, and sulfur derived from small organic molecules. The catalyst can exhibit activity in various electrochemical reactions. In particular, excellent performance is noted for the ORR. Compared to the commercial Pt/C, NBSCP exhibits a lower onset potential, higher current density, and superior durability. This excellent ORR activity and durability is attributable to the synergistic effect between Co2P nanoparticles and nitrogen‐doped carbon. In addition, superior performance is noted on applying NBSCP to a practical anion exchange membrane fuel cell system. Through this work, the possibility of applying an easily obtained bio‐derived material to energy conversion and storage systems is demonstrated.  相似文献   

16.
Highly active and durable air cathodes to catalyze both the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are urgently required for rechargeable metal–air batteries. In this work, an efficient bifunctional oxygen catalyst comprising hollow Co3O4 nanospheres embedded in nitrogen‐doped carbon nanowall arrays on flexible carbon cloth (NC‐Co3O4/CC) is reported. The hierarchical structure is facilely derived from a metal–organic framework precursor. A carbon onion coating constrains the Kirkendall effect to promote the conversion of the Co nanoparticles into irregular hollow oxide nanospheres with a fine scale nanograin structure, which enables promising catalytic properties toward both OER and ORR. The integrated NC‐Co3O4/CC can be used as an additive‐free air cathode for flexible all‐solid‐state zinc–air batteries, which present high open circuit potential (1.44 V), high capacity (387.2 mAh g?1, based on the total mass of Zn and catalysts), excellent cycling stability and mechanical flexibility, significantly outperforming Pt‐ and Ir‐based zinc–air batteries.  相似文献   

17.
A transition‐metal–nitrogen/carbon (TM–N/C, TM = Fe, Co, Ni, etc.) system is a popular, nonprecious‐metal oxygen reduction reaction (ORR) electrocatalyst for fuel cell and metal–air battery applications. However, there remains a lack of comprehensive understanding about the ORR electrocatalytic mechanism on these catalysts, especially the roles of different forms of metal species on electrocatalytic performance. Here, a novel Cu?N/C ORR electrocatalyst with a hybrid Cu coordination site is successfully fabricated with a simple but efficient metal–organic‐framework‐based, metal‐doping‐induced synthesis strategy. By directly pyrolyzing Cu‐doped zeolitic‐imidazolate‐framework‐8 polyhedrons, the obtained Cu?N/C catalyst can achieve a high specific surface area of 1182 m2 g?1 with a refined hierarchical porous structure and a high surface N content of 11.05 at%. Moreover, regulating the Cu loading can efficiently tune the states of Cu(II) and Cu0, resulting in the successful construction of a highly active hybrid coordination site of N?Cu(II)?Cu0 in derived Cu?N/C catalysts. As a result, the optimized 25% Cu?N/C catalyst possesses a high ORR activity and stability in 0.1 m KOH solution, as well as excellent performance and stability in a Zn–air battery.  相似文献   

18.
Dealloyed Pt bimetallic core–shell catalysts derived from low‐Pt bimetallic alloy nanoparticles (e.g, PtNi3) have recently shown unprecedented activity and stability on the cathodic oxygen reduction reaction (ORR) under realistic fuel cell conditions and become today's catalyst of choice for commercialization of automobile fuel cells. A critical step toward this breakthrough is to control their particle size below a critical value (≈10 nm) to suppress nanoporosity formation and hence reduce significant base metal (e.g., Ni) leaching under the corrosive ORR condition. Fine size control of the sub‐10 nm PtNi3 nanoparticles and understanding their size dependent ORR electrocatalysis are crucial to further improve their ORR activity and stability yet still remain unexplored. A robust synthetic approach is presented here for size‐controlled PtNi3 nanoparticles between 3 and 10 nm while keeping a constant particle composition and their size‐selected growth mechanism is studied comprehensively. This enables us to address their size‐dependent ORR activities and stabilities for the first time. Contrary to the previously established monotonic increase of ORR specific activity and stability with increasing particle size on Pt and Pt‐rich bimetallic nanoparticles, the Pt‐poor PtNi3 nanoparticles exhibit an unusual “volcano‐shaped” size dependence, showing the highest ORR activity and stability at the particle sizes between 6 and 8 nm due to their highest Ni retention during long‐term catalyst aging. The results of this study provide important practical guidelines for the size selection of the low Pt bimetallic ORR electrocatalysts with further improved durably high activity.  相似文献   

19.
氧电极催化剂是制约质子交换膜燃料电池(PEMFCs)发展和应用的一个重要因素, 开发低价高效的非贵金属催化剂对PEMFCs来说已成为当务之急。本研究选择氮掺杂的碳载过渡金属(M-N/C)类催化剂为研究对象, 以铁盐作为金属前驱体, BP2000为碳源, 聚吡咯(PPy)为氮源, 对甲基苯磺酸(TsOH)为掺杂剂, 合成了非贵金属催化剂Fe-PPy-TsOH/C, 探究了不同的热处理温度及钴原子的掺杂对其氧还原催化性能的影响。研究结果表明: 800℃制备的Fe-PPy-TsOH/C催化剂因结晶度高、颗粒大小适中且分布均匀而具有最佳的氧还原催化性能; 一定量的钴原子取代可以改善Fe-PPy-TsOH/C的氧还原催化性能, 当钴的掺杂量为33.33%时(铁钴原子比为2︰1), 催化剂的性能达到最优。  相似文献   

20.
A transition‐metal–nitrogen/carbon (TM–N/C, TM = Fe, Co, Ni, etc.) system is a popular, nonprecious‐metal oxygen reduction reaction (ORR) electrocatalyst for fuel cell and metal–air battery applications. However, there remains a lack of comprehensive understanding about the ORR electrocatalytic mechanism on these catalysts, especially the roles of different forms of metal species on electrocatalytic performance. Here, a novel Cu? N/C ORR electrocatalyst with a hybrid Cu coordination site is successfully fabricated with a simple but efficient metal–organic‐framework‐based, metal‐doping‐induced synthesis strategy. By directly pyrolyzing Cu‐doped zeolitic‐imidazolate‐framework‐8 polyhedrons, the obtained Cu? N/C catalyst can achieve a high specific surface area of 1182 m2 g?1 with a refined hierarchical porous structure and a high surface N content of 11.05 at%. Moreover, regulating the Cu loading can efficiently tune the states of Cu(II) and Cu0, resulting in the successful construction of a highly active hybrid coordination site of N? Cu(II)? Cu0 in derived Cu? N/C catalysts. As a result, the optimized 25% Cu? N/C catalyst possesses a high ORR activity and stability in 0.1 m KOH solution, as well as excellent performance and stability in a Zn–air battery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号