首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
This review comprises a detailed survey of ongoing methodologies for soft actuators, highlighting approaches suitable for nanometer‐ to centimeter‐scale robotic applications. Soft robots present a special design challenge in that their actuation and sensing mechanisms are often highly integrated with the robot body and overall functionality. When less than a centimeter, they belong to an even more special subcategory of robots or devices, in that they often lack on‐board power, sensing, computation, and control. Soft, active materials are particularly well suited for this task, with a wide range of stimulants and a number of impressive examples, demonstrating large deformations, high motion complexities, and varied multifunctionality. Recent research includes both the development of new materials and composites, as well as novel implementations leveraging the unique properties of soft materials.  相似文献   

3.
Materials capable of actuation through remote stimuli are crucial for untethering soft robotic systems from hardware for powering and control. Fluidic actuation is one of the most applied and versatile actuation strategies in soft robotics. Here, the first macroscale soft fluidic actuator is derived that operates remotely powered and controlled by light through a plasmonically induced phase transition in an elastomeric constraint. A multiphase assembly of a liquid layer of concentrated gold nanoparticles in a silicone or styrene–ethylene–butylene–styrene elastic pocket forms the actuator. Upon laser excitation, the nanoparticles convert light of specific wavelength into heat and initiate a liquid‐to‐gas phase transition. The related pressure increase inflates the elastomers in response to laser wavelength, intensity, direction, and on–off pulses. During laser‐off periods, heating halts and condensation of the gas phase renders the actuation reversible. The versatile multiphase materials actuate—like soft “steam engines”—a variety of soft robotic structures (soft valve, pnue‐net structure, crawling robot, pump) and are capable of operating in different environments (air, water, biological tissue) in a single configuration. Tailored toward the near‐infrared window of biological tissue, the structures actuate also through animal tissue for potential medical soft robotic applications.  相似文献   

4.
Devices fabricated using soft materials have been a major research focus of late, capturing the attention of scientists and laypersons alike in a wide range of fields, from microfluidics to robotics. The functionality of such devices relies on their structural and material properties; thus, the fabrication method is of utmost importance. Here, multilayer soft lithography, precision laser micromachining, and folding to establish a new paradigm are combined for creating 3D soft microstructures and devices. Phase‐changing materials are exploited to transform actuators into structural elements, allowing 2D laminates to evolve into a third spatial dimension. To illustrate the capabilities of this new fabrication paradigm, the first “microfluidic origami for reconfigurable pneumatic/hydraulic” device is designed and manufactured: a 12‐layer soft robotic peacock spider with embedded microfluidic circuitry and actuatable features.  相似文献   

5.
6.
7.
This paper introduces super absorbent polymer valves and colorimetric sensing reagents as enabling components of soft, skin‐mounted microfluidic devices designed to capture, store, and chemically analyze sweat released from eccrine glands. The valving technology enables robust means for guiding the flow of sweat from an inlet location into a collection of isolated reservoirs, in a well‐defined sequence. Analysis in these reservoirs involves a color responsive indicator of chloride concentration with a formulation tailored to offer stable operation with sensitivity optimized for the relevant physiological range. Evaluations on human subjects with comparisons against ex situ analysis illustrate the practical utility of these advances.  相似文献   

8.
9.
Recent progress in electronic skin or e‐skin research is broadly reviewed, focusing on technologies needed in three main applications: skin‐attachable electronics, robotics, and prosthetics. First, since e‐skin will be exposed to prolonged stresses of various kinds and needs to be conformally adhered to irregularly shaped surfaces, materials with intrinsic stretchability and self‐healing properties are of great importance. Second, tactile sensing capability such as the detection of pressure, strain, slip, force vector, and temperature are important for health monitoring in skin attachable devices, and to enable object manipulation and detection of surrounding environment for robotics and prosthetics. For skin attachable devices, chemical and electrophysiological sensing and wireless signal communication are of high significance to fully gauge the state of health of users and to ensure user comfort. For robotics and prosthetics, large‐area integration on 3D surfaces in a facile and scalable manner is critical. Furthermore, new signal processing strategies using neuromorphic devices are needed to efficiently process tactile information in a parallel and low power manner. For prosthetics, neural interfacing electrodes are of high importance. These topics are discussed, focusing on progress, current challenges, and future prospects.  相似文献   

10.
11.
12.
13.
14.
The noninvasive monitoring of protein secretion of cells responding to drug treatment is an effective and essential tool in latest drug development and for cytotoxicity assays. In this work, a surface functionalization method is demonstrated for specific detection of protein released from cells and a platform that integrates highly sensitive optical devices, called whispering‐gallery mode biosensors, with precise microfluidics control to achieve label‐free and real‐time detection. Cell biomarker release is measured in real time and with nanomolar sensitivity. The surface functionalization method allows for antibodies to be immobilized on the surface for specific detection, while the microfluidics system enables detection in a continuous flow with a negligible compromise between sensitivity and flow control over stabilization and mixing. Cytochrome c detection is used to illustrate the merits of the system. Jurkat cells are treated with the toxin staurosporine to trigger cell apoptosis and cytochrome c released into the cell culture medium is monitored via the newly invented optical microfluidic platform.  相似文献   

15.
Comprehensive analysis of sweat chemistry provides noninvasive health monitoring capabilities that complement established biophysical measurements such as heart rate, blood oxygenation, and body temperature. Recent developments in skin‐integrated soft microfluidic systems address many challenges associated with standard technologies in sweat collection and analysis. However, recording of time‐dependent variations in sweat composition requires bulky electronic systems and power sources, thereby constraining form factor, cost, and modes of use. Here, presented are unconventional design concepts, materials, and device operation principles that address this challenge. Flexible galvanic cells embedded within skin‐interfaced microfluidics with passive valves serve as sweat‐activated “stopwatches” that record temporal information associated with collection of discrete microliter volumes of sweat. The result allows for precise measurements of dynamic sweat composition fluctuations using in situ or ex situ analytical techniques. Integrated electronics based on near‐field communication (NFC) protocols or docking stations equipped with standard electronic measurement tools provide means for extracting digital timing results from the stopwatches. Human subject studies of time‐stamped sweat samples by in situ colorimetric methods and ex situ techniques based on inductively coupled plasma mass spectroscopy (ICP‐MS) and chlorodimetry illustrate the ability to quantitatively capture time‐dynamic sweat chemistry in scenarios compatible with field use.  相似文献   

16.
17.
18.
19.
The aim of secondary packaging plants is to pick food products from a conveyor belt and to place them into boxes. The typical configuration of these packaging plants consists of a set of sequential robot stations, performing pick‐and‐place cycles from one conveyor to another parallel one, which transport the products and the boxes to be filled. Depending on the relative movement of the two conveyors, the plant operates in co‐current or counter‐current flow configuration. Undesired perturbations in the product flow rate from its nominal value can lead to critical events, i.e. unpicked product at the end of the first conveyor or not completely filled boxes. Even if the structures of co‐current flow and of counter‐current flow plants are very similar, their behaviour in non‐nominal or perturbed conditions can significantly differ. The aim of this paper is to deeply investigate the behaviour of these two kinds of secondary packaging lines, evaluating their performances in the case of different pick‐and‐place strategies, using discrete events simulation techniques. Results show to which extent the different proposed control strategies can improve the performances of both co‐current and counter‐currents plants and, in particular, how co‐current plant layouts can achieve performances that are equivalent to, or perhaps even better than, those that can be obtained with a counter‐current plant layout, which cannot be freely used because of patent. The simulation tool, control algorithms and results presented can help packaging plant designers for choosing the most appropriate solutions and for properly sizing the plant. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Bright supramolecular fluorescent organic nanoassemblies (FONs), based on strongly polar red‐emissive benzothiadiazole fluorophores containing acidic units, are fabricated to serve as theranostic tools with large colloidal stability in the absence of a polymer or surfactant. High architectural cohesion is ensured by the multiple hydrogen‐bonding networks, reinforced by the dipolar and hydrophobic interactions developed between the dyes. Such interactions are harnessed to ensure high payload encapsulation and efficient trapping of hydrophobic and hydrogen‐bonding drugs like doxorubicin, as shown by steady state and time‐resolved measurements. Fine tuning of the drug release in cancer cells is achieved by adjusting the structure and combination of the fluorophore acidic units. Notably delayed drug delivery is observed by confocal microscopy compared to the entrance of hydrosoluble doxorubicin, demonstrating the absence of undesirable burst release outside the cells by using FONs. Since FON‐constituting fluorophores exhibit a large emission shift from red to green when dissociating in contact with the lipid cellular content, drug delivery could advantageously be followed by dual‐color spectral detection, independently of the drug staining potentiality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号