首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The high‐molar‐extinction‐coefficient heteroleptic ruthenium dye, cis‐Ru (4,4′‐bis(5‐octylthieno[3,2‐b] thiophen‐2‐yl)‐2,2′‐bipyridine) (4,4′‐dicarboxyl‐2,2′‐bipyridine) (NCS)2, exhibits an AM 1.5 solar (100 mW cm?2)‐to‐electric power‐conversion efficiency of 4.6% in a solid‐state dye‐sensitized solar cell (SSDSC) with 2,2′, 7,7′‐tetrakis‐(N,N‐di‐p‐methoxyphenylamine)9,9′‐spirobifluorene (spiro‐MeOTAD) as the organic hole‐transporting material. These SSDSC devices exhibit good durability during accelerated tests under visible‐light soaking for 1000 h at 60 °C. This demonstration elucidates a class of photovoltaic devices with potential for stable and low‐cost power generation. The electron recombination dynamics and charge collection that take place at the dye‐sensitized heterojunction are studied by means of impedance and transient photovoltage decay techniques.  相似文献   

2.
While high‐performance p‐type semiconducting polymers are widely reported, their n‐type counterparts are still rare in terms of quantity and quality. Here, an improved Stille polymerization protocol using chlorobenzene as the solvent and palladium(0)/copper(I) as the catalyst is developed to synthesize high‐quality n‐type polymers with number‐average molecular weight up to 105 g mol?1. Furthermore, by sp2‐nitrogen atoms (sp2‐N) substitution, three new n‐type polymers, namely, pBTTz, pPPT, and pSNT, are synthesized, and the effect of different sp2‐N substitution positions on the device performances is studied for the first time. It is found that the incorporation of sp2‐N into the acceptor units rather than the donor units results in superior crystalline microstructures and higher electron mobilities. Furthermore, an amine‐tailed self‐assembled monolayer (SAM) is smoothly formed on a Si/SiO2 substrate by a simple spin‐coating technique, which can facilitate the accumulation of electrons and lead to more perfect unipolar n‐type transistor performances. Therefore, a remarkably high unipolar electron mobility up to 5.35 cm2 V?1 s?1 with a low threshold voltage (≈1 V) and high on/off current ratio of ≈107 is demonstrated for the pSNT‐based devices, which are among the highest values for unipolar n‐type semiconducting polymers.  相似文献   

3.
With an indenoindene core, a new thieno[3,4‐b ]thiophene‐based small‐molecule electron acceptor, 2,2′‐((2Z,2′Z)‐((6,6′‐(5,5,10,10‐tetrakis(2‐ethylhexyl)‐5,10‐dihydroindeno[2,1‐a]indene‐2,7‐diyl)bis(2‐octylthieno[3,4‐b]thiophene‐6,4‐diyl))bis(methanylylidene))bis(5,6‐difluoro‐3‐oxo‐2,3‐dihydro‐1H‐indene‐2,1‐diylidene))dimalononitrile ( NITI ), is successfully designed and synthesized. Compared with 12‐π‐electron fluorene, a carbon‐bridged biphenylene with an axial symmetry, indenoindene, a carbon‐bridged E ‐stilbene with a centrosymmetry, shows elongated π‐conjugation with 14 π‐electrons and one more sp3 carbon bridge, which may increase the tunability of electronic structure and film morphology. Despite its twisted molecular framework, NITI shows a low optical bandgap of 1.49 eV in thin film and a high molar extinction coefficient of 1.90 × 105m ?1 cm?1 in solution. By matching NITI with a large‐bandgap polymer donor, an extraordinary power conversion efficiency of 12.74% is achieved, which is among the best performance so far reported for fullerene‐free organic photovoltaics and is inspiring for the design of new electron acceptors.  相似文献   

4.
The poor UV, thermal, and interfacial stability of perovskite solar cells (PSCs) makes it highly challenging for their technological application, and has drawn increasing attention to resolving the above issues. In nature, plants generally sustain long exposure to UV illumination without damage, which is attributed to the presence of the organic materials acting as sunscreens. Inspired by the natural phenomenon, a natural plant sunscreen, sinapoyl malate, an ester derivative of sinapic acid, is employed to modify the surface of electron transport materials (ETMs). The interfacial modification successfully resolved the UV stability and reduced the poor interfacial contact between ETM and perovskite. The best efficiency of fabricated PSCs is up to 19.6%. Furthermore, we employed a mixture of Co(II) and Co(III)‐based porphyrin compounds containing the excellent Co(II)/Co(III) redox couple to substitute the commonly used hole transport material, 2,2′,7,7′‐tetrakis(N,N‐di‐p‐methoxyphenylamine)‐9,9‐spiro‐bifluorene (spiro‐OMeTAD), to resolve the thermal degradation of PSCs noted at and above 80 °C that originates from ion diffusion of I? and CH3NH3+ (MA+) ions from perovskite into spiro‐OMeTAD. Finally, the stable PSCs with the best efficiency up to 20.5% are successfully fabricated.  相似文献   

5.
The main challenge for application of solution‐derived carbon nanotubes (CNTs) in high performance field‐effect transistor (FET) is how to align CNTs into an array with high density and full surface coverage. A directional shrinking transfer method is developed to realize high density aligned array based on randomly orientated CNT network film. Through transferring a solution‐derived CNT network film onto a stretched retractable film followed by a shrinking process, alignment degree and density of CNT film increase with the shrinking multiple. The quadruply shrunk CNT films present well alignment, which is identified by the polarized Raman spectroscopy and electrical transport measurements. Based on the high quality and high density aligned CNT array, the fabricated FETs with channel length of 300 nm present ultrahigh performance including on‐state current Ion of 290 µA µm?1 (Vds = ?1.5 V and Vgs = ?2 V) and peak transconductance gm of 150 µS µm?1, which are, respectively, among the highest corresponding values in the reported CNT array FETs. High quality and high semiconducting purity CNT arrays with high density and full coverage obtained through this method promote the development of high performance CNT‐based electronics.  相似文献   

6.
Naphtho[1,2‐b:5,6‐b′]dithiophene is extended to a fused octacyclic building block, which is end capped by strong electron‐withdrawing 2‐(5,6‐difluoro‐3‐oxo‐2,3‐dihydro‐1H‐inden‐1‐ylidene)malononitrile to yield a fused‐ring electron acceptor (IOIC2) for organic solar cells (OSCs). Relative to naphthalene‐based IHIC2, naphthodithiophene‐based IOIC2 with a larger π‐conjugation and a stronger electron‐donating core shows a higher lowest unoccupied molecular orbital energy level (IOIC2: ?3.78 eV vs IHIC2: ?3.86 eV), broader absorption with a smaller optical bandgap (IOIC2: 1.55 eV vs IHIC2: 1.66 eV), and a higher electron mobility (IOIC2: 1.0 × 10?3 cm2 V?1 s?1 vs IHIC2: 5.0 × 10?4 cm2 V?1 s?1). Thus, IOIC2‐based OSCs show higher values in open‐circuit voltage, short‐circuit current density, fill factor, and thereby much higher power conversion efficiency (PCE) values than those of the IHIC2‐based counterpart. In particular, as‐cast OSCs based on FTAZ: IOIC2 yield PCEs of up to 11.2%, higher than that of the control devices based on FTAZ: IHIC2 (7.45%). Furthermore, by using 0.2% 1,8‐diiodooctane as the processing additive, a PCE of 12.3% is achieved from the FTAZ:IOIC2 ‐ based devices, higher than that of the FTAZ:IHIC2 ‐ based devices (7.31%). These results indicate that incorporating extended conjugation into the electron‐donating fused‐ring units in nonfullerene acceptors is a promising strategy for designing high‐performance electron acceptors.  相似文献   

7.
Pure (PVDF/KI/I2) and 4,4′-bipyridine-doped PVDF/KI/I2 solid state polymer electrolytes were prepared by solution casting method using N,N-dimethylformamide (DMF) as solvent. The solid state polymer electrolytes were characterized by the powder X-ray diffraction (PXRD), Fourier transform infrared (FTIR), AC-impedance, dielectric measurements and scanning electron microscopy (SEM) analysis. The crystallinity of the solid state polymer electrolytes was analyzed by PXRD measurement. The functional groups of the solid state polymer electrolytes were confirmed by FTIR analysis. The AC-impedance analysis was carried out to calculate the ionic conductivity of the solid state polymer electrolytes. The ionic conductivity value of pure (PVDF/KI/I2) and 4,4′-bipyridine-doped PVDF/KI/I2 solid state polymer electrolytes are 2.00?×?10?6 S cm?1 and 4.60?×?10?5 S cm?1, respectively. The dielectric properties of solid state polymer electrolytes were calculated by using the dielectric measurements. From the SEM analysis, the surface morphology of the solid state polymer electrolytes was analyzed. The power conversion efficiencies of pure (PVDF/KI/I2) and 4,4′-bipyridine-doped PVDF/KI/I2 solid state polymer electrolytes are 1.8% and 4.4%, respectively. 4,4′-bipyridine-doped PVDF/KI/I2 solid state polymer electrolyte has higher power conversion efficiency due to its increased amorphous nature and ionic mobility.  相似文献   

8.
New 3,3′‐dithioalkyl‐2,2′‐bithiophene ( SBT )‐based small molecular and polymeric semiconductors are synthesized by end‐capping or copolymerization with dithienothiophen‐2‐yl units. Single‐crystal, molecular orbital computations, and optical/electrochemical data indicate that the SBT core is completely planar, likely via S(alkyl)?S(thiophene) intramolecular locks. Therefore, compared to semiconductors based on the conventional 3,3′‐dialkyl‐2,2′‐bithiophene, the resulting SBT systems are planar (torsional angle <1°) and highly π‐conjugated. Charge transport is investigated for solution‐sheared films in field‐effect transistors demonstrating that SBT can enable good semiconducting materials with hole mobilities ranging from ≈0.03 to 1.7 cm2 V?1 s?1. Transport difference within this family is rationalized by film morphology, as accessed by grazing incidence X‐ray diffraction experiments.  相似文献   

9.
Conjugated polymers with tailored donor–acceptor units have recently attracted considerable attention in organic photovoltaic devices due to the controlled optical bandgap and retained favorable separation of charge carriers. Inspired by these advantages, an effective strategy is presented to solve the main obstructions of graphitic carbon nitride (g‐C3N4) photocatalyst for solar energy conversion, that is, inefficient visible light response and insufficient separation of photogenerated electrons and holes. Donor‐π–acceptor‐π–donor polymers are prepared by incorporating 4,4′‐(benzoc 1,2,5 thiadiazole‐4,7‐diyl) dianiline (BD) into the g‐C3N4 framework (UCN‐BD). Benefiting from the visible light band tail caused by the extended π conjugation, UCN‐BD possesses expanded visible light absorption range. More importantly, the BD monomer also acts as an electron acceptor, which endows UCN‐BD with a high degree of intramolecular charge transfer. With this unique molecular structure, the optimized UCN‐BD sample exhibits a superior performance for photocatalytic hydrogen evolution upon visible light illumination (3428 µmol h?1 g?1), which is nearly six times of that of the pristine g‐C3N4. In addition, the photocatalytic property remains stable for six cycles in 3 d. This work provides an insight into the synthesis of g‐C3N4‐based D‐π–A‐π–D systems with highly visible light response and long lifetime of intramolecular charge carriers for solar fuel production.  相似文献   

10.
Nano‐floating gate memory (NFGM) devices are transistor‐type memory devices that use nanostructured materials as charge trap sites. They have recently attracted a great deal of attention due to their excellent performance, capability for multilevel programming, and suitability as platforms for integrated circuits. Herein, novel NFGM devices have been fabricated using semiconducting cobalt ferrite (CoFe2O4) nanoparticles (NPs) as charge trap sites and pentacene as a p‐type semiconductor. Monodisperse CoFe2O4 NPs with different diameters have been synthesized by thermal decomposition and embedded in NFGM devices. The particle size effects on the memory performance have been investigated in terms of energy levels and particle–particle interactions. CoFe2O4 NP‐based memory devices exhibit a large memory window (≈73.84 V), a high read current on/off ratio (read Ion/Ioff) of ≈2.98 × 103, and excellent data retention. Fast switching behaviors are observed due to the exceptional charge trapping/release capability of CoFe2O4 NPs surrounded by the oleate layer, which acts as an alternative tunneling dielectric layer and simplifies the device fabrication process. Furthermore, the NFGM devices show excellent thermal stability, and flexible memory devices fabricated on plastic substrates exhibit remarkable mechanical and electrical stability. This study demonstrates a viable means of fabricating highly flexible, high‐performance organic memory devices.  相似文献   

11.
A new 2:1 donor (D):acceptor (A) mixed‐stacked charge‐transfer (CT) cocrystal comprising isometrically structured dicyanodistyrylbenzene‐based D and A molecules is designed and synthesized. Uniform 2D‐type morphology is manifested by the exquisite interplay of intermolecular interactions. In addition to its appealing structural features, unique optoelectronic properties are unveiled. Exceptionally high photoluminescence quantum yield (Φ F ≈ 60%) is realized by non‐negligible oscillator strength of the S1 transition, and rigidified 2D‐type structure. Moreover, this luminescent 2D‐type CT crystal exhibits balanced ambipolar transport (µ h and µ e of ≈10?4 cm2 V?1 s?1). As a consequence of such unique optoelectronic characteristics, the first CT electroluminescence is demonstrated in a single active‐layered organic light‐emitting transistor (OLET) device. The external quantum efficiency of this OLET is as high as 1.5% to suggest a promising potential of luminescent mixed‐stacked CT cocrystals in OLET applications.  相似文献   

12.
Perovskite solar cells (PSCs) based on cesium (Cs)‐ and rubidium (Rb)‐containing perovskite films show highly reproducible performance; however, a fundamental understanding of these systems is still emerging. Herein, this study has systematically investigated the role of Cs and Rb cations in complete devices by examining the transport and recombination processes using current–voltage characteristics and impedance spectroscopy in the dark. As the credibility of these measurements depends on the performance of devices, this study has chosen two different PSCs, (MAFACs)Pb(IBr)3 (MA = CH3NH3+, FA = CH(NH2)2+) and (MAFACsRb)Pb(IBr)3, yielding impressive performances of 19.5% and 21.1%, respectively. From detailed studies, this study surmises that the confluence of the low trap‐assisted charge‐carrier recombination, low resistance offered to holes at the perovskite/2,2′,7,7′‐tetrakis(N,N‐di‐p‐methoxyphenylamine)‐9,9‐spirobifluorene interface with a low series resistance (Rs), and low capacitance leads to the realization of higher performance when an extra Rb cation is incorporated into the absorber films. This study provides a thorough understanding of the impact of inorganic cations on the properties and performance of highly efficient devices, and also highlights new strategies to fabricate efficient multiple‐cation‐based PSCs.  相似文献   

13.
Photoelectrochemical (PEC) water reduction, converting solar energy into environmentally friendly hydrogen fuel, requires delicate design and synthesis of semiconductors with appropriate bandgaps, suitable energy levels of the frontier orbitals, and high intrinsic charge mobility. In this work, the synthesis of a novel bithiophene‐bridged donor–acceptor‐based 2D sp2‐carbon‐linked conjugated polymer (2D CCP) is demonstrated. The Knoevenagel polymerization between the electron‐accepting building block 2,3,8,9,14,15‐hexa(4‐formylphenyl) diquinoxalino[2,3‐a:2′,3′‐c]phenazine (HATN‐6CHO) and the first electron‐donating linker 2,2′‐([2,2′‐bithiophene]‐5,5′‐diyl)diacetonitrile (ThDAN) provides the 2D CCP‐HATNThDAN (2D CCP‐Th). Compared with the corresponding biphenyl‐bridged 2D CCP‐HATN‐BDAN (2D CCP‐BD), the bithiophene‐based 2D CCP‐Th exhibits a wide light‐harvesting range (up to 674 nm), a optical energy gap (2.04 eV), and highest energy occupied molecular orbital–lowest unoccupied molecular orbital distributions for facilitated charge transfer, which make 2D CCP‐Th a promising candidate for PEC water reduction. As a result, 2D CCP‐Th presents a superb H2‐evolution photocurrent density up to ≈7.9 µA cm?2 at 0 V versus reversible hydrogen electrode, which is superior to the reported 2D covalent organic frameworks and most carbon nitride materials (0.09–6.0 µA cm?2). Density functional theory calculations identify the thiophene units and cyano substituents at the vinylene linkage as active sites for the evolution of H2.  相似文献   

14.
A side‐chain conjugation strategy in the design of nonfullerene electron acceptors is proposed, with the design and synthesis of a side‐chain‐conjugated acceptor (ITIC2) based on a 4,8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)benzo[1,2‐b :4,5‐b′ ]di(cyclopenta‐dithiophene) electron‐donating core and 1,1‐dicyanomethylene‐3‐indanone electron‐withdrawing end groups. ITIC2 with the conjugated side chains exhibits an absorption peak at 714 nm, which redshifts 12 nm relative to ITIC1. The absorption extinction coefficient of ITIC2 is 2.7 × 105m ?1 cm?1, higher than that of ITIC1 (1.5 × 105m ?1 cm?1). ITIC2 exhibits slightly higher highest occupied molecular orbital (HOMO) (?5.43 eV) and lowest unoccupied molecular orbital (LUMO) (?3.80 eV) energy levels relative to ITIC1 (HOMO: ?5.48 eV; LUMO: ?3.84 eV), and higher electron mobility (1.3 × 10?3 cm2 V?1 s?1) than that of ITIC1 (9.6 × 10?4 cm2 V?1 s?1). The power conversion efficiency of ITIC2‐based organic solar cells is 11.0%, much higher than that of ITIC1‐based control devices (8.54%). Our results demonstrate that side‐chain conjugation can tune energy levels, enhance absorption, and electron mobility, and finally enhance photovoltaic performance of nonfullerene acceptors.  相似文献   

15.
A new polymer acceptor, naphthodiperylenetetraimide‐vinylene (NDP‐V), featuring a backbone of altenating naphthodiperylenetetraimide and vinylene units is designed and applied in all‐polymer solar cells (all‐PSCs). With this polymer acceptor, a new record power‐conversion efficiencies (PCE) of 8.59% has been achieved for all‐PSCs. The design principle of NDP‐V is to reduce the conformational disorder in the backbone of a previously developed high‐performance acceptor, PDI‐V, a perylenediimide‐vinylene polymer. The chemical modifications result in favorable changes to the molecular packing behaviors of the acceptor and improved morphology of the donor–acceptor (PTB7‐Th:NDP‐V) blend, which is evidenced by the enhanced hole and electron transport abilities of the active layer. Moreover, the stronger absorption of NDP‐V in the shorter‐wavelength range offers a better complement to the donor. All these factors contribute to a short‐circuit current density (J sc) of 17.07 mA cm?2. With a fill factor (FF) of 0.67, an average PCE of 8.48% is obtained, representing the highest value thus far reported for all‐PSCs.  相似文献   

16.
The interfacial charge effect is crucial for high‐sensitivity organic phototransistors (OPTs), but conventional layered and hybrid OPTs have a trade‐off in balancing the separation, transport, and recombination of photogenerated charges, consequently impacting the device performance. Herein, a novel hybrid‐layered phototransistor (HL‐OPT) is reported with significantly improved photodetection performance, which takes advantages of both the charge‐trapping effect (CTE) and efficient carrier transport. The HL‐OPT consisting of 2,7‐dioctyl[1]benzothieno[3,2‐b][1]benzothiophene (C8‐BTBT) as conduction channel, C8‐BTBT:[6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM) bulk heterojunction as photoactive layer, and sandwiched MoO3 interlayer as a charge‐transport interlayer exhibits outstanding photodetection characteristics such as a photosensitivity (Ilight/Idark) of 2.9 × 106, photoresponsivity (R) of 8.6 × 103 A W?1, detectivity (D*) of 3.4 × 1014 Jones, and external quantum efficiency of 3 × 106% under weak light illumination of 32 µW cm?2. The mechanism and strategy described here provide new insights into the design and optimization of high‐performance OPTs spanning the ultraviolet and near infrared (NIR) range as well as fundamental issues pertaining to the electronic and photonic properties of the devices.  相似文献   

17.
A fused hexacyclic electron acceptor, IHIC, based on strong electron‐donating group dithienocyclopentathieno[3,2‐b ]thiophene flanked by strong electron‐withdrawing group 1,1‐dicyanomethylene‐3‐indanone, is designed, synthesized, and applied in semitransparent organic solar cells (ST‐OSCs). IHIC exhibits strong near‐infrared absorption with extinction coefficients of up to 1.6 × 105m ?1 cm?1, a narrow optical bandgap of 1.38 eV, and a high electron mobility of 2.4 × 10?3 cm2 V?1 s?1. The ST‐OSCs based on blends of a narrow‐bandgap polymer donor PTB7‐Th and narrow‐bandgap IHIC acceptor exhibit a champion power conversion efficiency of 9.77% with an average visible transmittance of 36% and excellent device stability; this efficiency is much higher than any single‐junction and tandem ST‐OSCs reported in the literature.  相似文献   

18.
A novel wide‐bandgap copolymer of PBDT‐ODZ based on benzo[1,2‐b:4,5‐b′ ]dithiophene (BDT) and 1,3,4‐oxadiazole (ODZ) blocks is developed for efficient nonfullerene polymer solar cells (NF‐PSCs). PBDT‐ODZ exhibits a wide bandgap of 2.12 eV and a low‐lying highest occupied molecular orbital (HOMO) level of ?5.68 eV, which could match well with the low‐bandgap acceptor of 3,9‐bis(2‐methylene‐(3‐(1,1‐dicyanomethylene)‐indanone)‐5,5,11,11‐tetrakis(4‐hexylthienyl)‐dithieno[2,3‐d:2′,3′‐d′]‐s‐indaceno[1,2‐b:5,6‐b′]‐dithiophene (ITIC‐Th), inducing a good complementary absorption from 300 to 800 nm and a minimal HOMO level offset (0.1 eV). The PBDT‐ODZ:ITIC‐Th devices exhibit a large open‐circuit voltage (Voc) of 1.08 eV and a low energy loss (Eloss) of 0.50 eV, delivering a high power conversion efficiency (PCE) of 10.12%. By adding a small amount of copper(I) iodide (CuI) as an additive to form coordination complexes in the active blends, much higher device performances are achieved due to the improved absorption and crystallinity. After incorporating 4% of CuI, the PCE is elevated to 12.34%, with a Voc of 1.06 V, a Jsc of 17.1 mA cm?2 and a fill factor of 68.1%. This work not only provides a novel oxadiazole‐containing wide‐bandgap polymeric donor candidate for high‐performance NF‐PSCs but also presents an efficient morphology‐optimization approach to elevate the PCE of NF‐PSCs for future practical applications.  相似文献   

19.
Organic field‐effect transistors (OFETs) with impressively high hole mobilities over 10 cm2 V?1 s?1 and electron mobilities over 1 cm2 V?1 s?1 have been reported in the past few years. However, significant non‐ideal electrical characteristics, e.g., voltage‐dependent mobilities, have been widely observed in both small‐molecule and polymer systems. This issue makes the accurate evaluation of the electrical performance impossible and also limits the practical applications of OFETs. Here, a semiconductor‐unrelated, charge‐trapping‐induced non‐ideality in OFETs is reported, and a revised model for the non‐ideal transfer characteristics is provided. The trapping process can be directly observed using scanning Kelvin probe microscopy. It is found that such trapping‐induced non‐ideality exists in OFETs with different types of charge carriers (p‐type or n‐type), different types of dielectric materials (inorganic and organic) that contain different functional groups (? OH, ? NH2, ? COOH, etc.). As fas as it is known, this is the first report for the non‐ideal transport behaviors in OFETs caused by semiconductor‐independent charge trapping. This work reveals the significant role of dielectric charge trapping in the non‐ideal transistor characteristics and also provides guidelines for device engineering toward ideal OFETs.  相似文献   

20.
π-conjugated organic semiconductors have long been used as either holes or electrons transport materials. Recently, ambipolar charge carrier transport in these materials have been reported in many investigations. In this paper, we report on the basis of experimental results that the organic semiconductor (donor/acceptor) materials can be as good electrons transporters as these materials are holes transporters. In our study, the solution-processed unipolar diodes based on organic materials P3HT, VOPCPhO, and their blends with PCBM have been fabricated. The IV characteristics of these diodes have been analyzed in the space-charge-limited current regime. The values of the electron and hole mobilities for the materials were found in the range of 10?4–10?5?cm2/Vs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号