共查询到20条相似文献,搜索用时 15 毫秒
1.
Manukumara Manjappa Ankur Solanki Abhishek Kumar Tze Chien Sum Ranjan Singh 《Advanced materials (Deerfield Beach, Fla.)》2019,31(32)
Solution‐processed lead iodide (PbI2) governs the charge transport characteristics in the hybrid metal halide perovskites. Besides being a precursor in enhancing the performance of perovskite solar cells, PbI2 alone offers remarkable optical and ultrasensitive photoresponsive properties that remain largely unexplored. Here, the photophysics and the ultrafast carrier dynamics of the solution processed PbI2 thin film is probed experimentally. A PbI2 integrated metamaterial photonic device with switchable picosecond time response at extremely low photoexcitation fluences is demonstrated. Further, findings show strongly confined terahertz field induced tailoring of sensitivity and switching time of the metamaterial resonances for different thicknesses of PbI2 thin film. The approach has two far reaching consequences: the first lead‐iodide‐based ultrafast photonic device and resonantly confined electromagnetic field tailored transient nonequilibrium dynamics of PbI2 which could also be applied to a broad range of semiconductors for designing on‐chip, ultrafast, all‐optical switchable photonic devices. 相似文献
2.
3.
Mohammad Taghinejad Hossein Taghinejad Zihao Xu Yawei Liu Sean P. Rodrigues Kyu‐Tae Lee Tianquan Lian Ali Adibi Wenshan Cai 《Advanced materials (Deerfield Beach, Fla.)》2018,30(9)
The optical Kerr nonlinearity of plasmonic metals provides enticing prospects for developing reconfigurable and ultracompact all‐optical modulators. In nanostructured metals, the coherent coupling of light energy to plasmon resonances creates a nonequilibrium electron distribution at an elevated electron temperature that gives rise to significant Kerr optical nonlinearities. Although enhanced nonlinear responses of metals facilitate the realization of efficient modulation devices, the intrinsically slow relaxation dynamics of the photoexcited carriers, primarily governed by electron–phonon interactions, impedes ultrafast all‐optical modulation. Here, femtosecond (≈190 fs) all‐optical modulation in plasmonic systems via the activation of relaxation pathways for hot electrons at the interface of metals and electron acceptor materials, following an on‐resonance excitation of subradiant lattice plasmon modes, is demonstrated. Both the relaxation kinetics and the optical nonlinearity can be actively tuned by leveraging the spectral response of the plasmonic design in the linear regime. The findings offer an opportunity to exploit hot‐electron‐induced nonlinearities for design of self‐contained, ultrafast, and low‐power all‐optical modulators based on plasmonic platforms. 相似文献
4.
5.
6.
A Solution‐Processed Ultrafast Optical Switch Based on a Nanostructured Epsilon‐Near‐Zero Medium 下载免费PDF全文
Qiangbing Guo Yudong Cui Yunhua Yao Yuting Ye Yue Yang Xueming Liu Shian Zhang Xiaofeng Liu Jianrong Qiu Hideo Hosono 《Advanced materials (Deerfield Beach, Fla.)》2017,29(27)
All the optical properties of materials are derived from dielectric function. In spectral region where the dielectric permittivity approaches zero, known as epsilon‐near‐zero (ENZ) region, the propagating light within the material attains a very high phase velocity, and meanwhile the material exhibits strong optical nonlinearity. The interplay between the linear and nonlinear optical response in these materials thus offers unprecedented pathways for all‐optical control and device design. Here the authors demonstrate ultrafast all‐optical modulation based on a typical ENZ material of indium tin oxide (ITO) nanocrystals (NCs), accessed by a wet‐chemistry route. In the ENZ region, the authors find that the optical response in these ITO NCs is associated with a strong nonlinear character, exhibiting sub‐picosecond response time (corresponding to frequencies over 2 THz) and modulation depth up to ≈160%. This large optical nonlinearity benefits from the highly confined geometry in addition to the ENZ enhancement effect of the ITO NCs. Based on these ENZ NCs, the authors successfully demonstrate a fiber optical switch that allows switching of continuous laser wave into femtosecond laser pulses. Combined with facile processibility and tunable optical properties, these solution‐processed ENZ NCs may offer a scalable and printable material solution for dynamic photonic and optoelectronic devices. 相似文献
7.
8.
Flexible Transparent and Free‐Standing SiC Nanowires Fabric: Stretchable UV Absorber and Fast‐Response UV‐A Detector 下载免费PDF全文
Transparent and flexible materials are desired for the construction of photoelectric multifunctional integrated devices and portable electronics. Herein, 2H‐SiC nanowires are assembled into a flexible, transparent, self‐standing nanowire fabric (FTS‐NWsF). The as‐synthesized ultralong nanowires form high‐quality crystals with a few stacking faults. The optical transmission spectra reveal that FTS‐NWsF absorbs most incident 200–400 nm light, but remains transparent to visible light. A polydimethylsiloxane (PDMS)–SiC fabric–PDMS sandwich film device exhibits stable electrical output even when repeatedly stretched by up to 50%. Unlike previous SiC nanowires in which stacking faults are prevalent, the transparent, stretchable SiC fabric shows considerable photoelectric activity and exhibits a rapid photoresponse (rise and decay time < 30 ms) to 340–400 nm light, covering most of the UV‐A spectral region. These advances represent significant progress in the design of functional optoelectronic SiC nanowires and transparent and stretchable optoelectronic systems. 相似文献
9.
10.
11.
12.
13.
14.
15.
16.
Nicholas R. Glavin Kelson D. Chabak Eric R. Heller Elizabeth A. Moore Timothy A. Prusnick Benji Maruyama Dennis E. Walker Jr. Donald L. Dorsey Qing Paduano Michael Snure 《Advanced materials (Deerfield Beach, Fla.)》2017,29(47)
Flexible gallium nitride (GaN) thin films can enable future strainable and conformal devices for transmission of radio‐frequency (RF) signals over large distances for more efficient wireless communication. For the first time, strainable high‐frequency RF GaN devices are demonstrated, whose exceptional performance is enabled by epitaxial growth on 2D boron nitride for chemical‐free transfer to a soft, flexible substrate. The AlGaN/GaN heterostructures transferred to flexible substrates are uniaxially strained up to 0.85% and reveal near state‐of‐the‐art values for electrical performance, with electron mobility exceeding 2000 cm2 V?1 s?1 and sheet carrier density above 1.07 × 1013 cm?2. The influence of strain on the RF performance of flexible GaN high‐electron‐mobility transistor (HEMT) devices is evaluated, demonstrating cutoff frequencies and maximum oscillation frequencies greater than 42 and 74 GHz, respectively, at up to 0.43% strain, representing a significant advancement toward conformal, highly integrated electronic materials for RF applications. 相似文献
17.
Bioinspired Graphene‐Based Nanocomposites and Their Application in Flexible Energy Devices 下载免费PDF全文
Sijie Wan Jingsong Peng Lei Jiang Qunfeng Cheng 《Advanced materials (Deerfield Beach, Fla.)》2016,28(36):7862-7898
Graphene is the strongest and stiffest material ever identified and the best electrical conductor known to date, making it an ideal candidate for constructing nanocomposites used in flexible energy devices. However, it remains a great challenge to assemble graphene nanosheets into macro‐sized high‐performance nanocomposites in practical applications of flexible energy devices using traditional approaches. Nacre, the gold standard for biomimicry, provides an excellent example and guideline for assembling two‐dimensional nanosheets into high‐performance nanocomposites. This review summarizes recent research on the bioinspired graphene‐based nanocomposites (BGBNs), and discusses different bioinspired assembly strategies for constructing integrated high‐strength and ‐toughness graphene‐based nanocomposites through various synergistic effects. Fundamental properties of graphene‐based nanocomposites, such as strength, toughness, and electrical conductivities, are highlighted. Applications of the BGBNs in flexible energy devices, as well as potential challenges, are addressed. Inspired from the past work done by the community a roadmap for the future of the BGBNs in flexible energy device applications is depicted. 相似文献
18.
Jingying Liu Babar Shabbir Chujie Wang Tao Wan Qingdong Ou Pei Yu Anton Tadich Xuechen Jiao Dewei Chu Dongchen Qi Dabing Li Ruifeng Kan Yamin Huang Yemin Dong Jacek Jasieniak Yupeng Zhang Qiaoliang Bao 《Advanced materials (Deerfield Beach, Fla.)》2019,31(30)
Metal halide perovskites represent a family of the most promising materials for fascinating photovoltaic and photodetector applications due to their unique optoelectronic properties and much needed simple and low‐cost fabrication process. The high atomic number (Z) of their constituents and significantly higher carrier mobility also make perovskite semiconductors suitable for the detection of ionizing radiation. By taking advantage of that, the direct detection of soft‐X‐ray‐induced photocurrent is demonstrated in both rigid and flexible detectors based on all‐inorganic halide perovskite quantum dots (QDs) synthesized via a solution process. Utilizing a synchrotron soft‐X‐ray beamline, high sensitivities of up to 1450 µC Gyair?1 cm?2 are achieved under an X‐ray dose rate of 0.0172 mGyair s?1 with only 0.1 V bias voltage, which is about 70‐fold more sensitive than conventional α‐Se devices. Furthermore, the perovskite film is printed homogeneously on various substrates by the inexpensive inkjet printing method to demonstrate large‐scale fabrication of arrays of multichannel detectors. These results suggest that the perovskite QDs are ideal candidates for the detection of soft X‐rays and for large‐area flat or flexible panels with tremendous application potential in multidimensional and different architectures imaging technologies. 相似文献
19.
Emerging novel applications at the forefront of innovation horizon raise new requirements including good flexibility and unprecedented properties for the photoelectronic industry. On account of diversity in transport and photoelectric properties, 2D layered materials have proven as competent building blocks toward next‐generation photodetectors. Herein, an all‐2D Bi2Te3‐SnS‐Bi2Te3 photodetector is fabricated with pulsed‐laser deposition. It is sensitive to broadband wavelength from ultraviolet (370 nm) to near‐infrared (808 nm). In addition, it exhibits great durability to bend, with intact photoresponse after 100 bend cycles. Upon 370 nm illumination, it achieves a high responsivity of 115 A W?1, a large external quantum efficiency of 3.9 × 104%, and a superior detectivity of 4.1 × 1011 Jones. They are among the best figures‐of‐merit of state‐of‐the‐art 2D photodetectors. The synergistic effect of SnS's strong light–matter interaction, efficient carrier separation of Bi2Te3–SnS interface, expedite carrier injection across Bi2Te3–SnS interface, and excellent carrier collection of Bi2Te3 topological insulator electrodes accounts for the superior photodetection properties. In summary, this work depicts a facile all‐in‐one fabrication strategy toward a Bi2Te3‐SnS‐Bi2Te3 photodetector. More importantly, it reveals a novel all‐2D concept for construction of flexible, broadband, and high‐performance photoelectronic devices by integrating 2D layered metallic electrodes and 2D layered semiconducting channels. 相似文献
20.
Jiaqi Xu Xiaoning Zhao Zhongqiang Wang Haiyang Xu Junli Hu Jiangang Ma Yichun Liu 《Small (Weinheim an der Bergstrasse, Germany)》2019,15(4)
Transient electronics that can physically vanish in solution can offer opportunities to address the ecological challenges for dealing with the rapidly growing electronic waste. As one important component, it is desirable that memory devices combined with the transient feature can also be developed as secrecy information storage systems besides the above advantage. Resistive switching (RS) memory is one of the most promising technologies for next‐generation memory. Herein, the biocompatible pectin extracted from natural orange peel is introduced to fabricate RS memory devices (Ag/pectin/indium tin oxides (ITO)), which exhibit excellent RS characteristics, such as forming free characteristic, low operating voltages (≈1.1 V), fast switching speed (<70 ns), long retention time (>104 s), and multilevel RS behaviors. The device performance is not degraded after 104 bending cycles, which will be beneficial for flexible memory applications. Additionally, instead of using acid solution, the Ag/pectin/ITO memory device can be dissolved rapidly in deionized water within 10 min thanks to the good solubility arising from ionization of its carboxylic groups, which shows promising application for green electronics. The present biocompatible memory devices based on natural pectin suggest promising material candidates toward enabling high‐density secure information storage systems applications, flexible electronics, and green electronics. 相似文献